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The gasdynamic 10-moment equations are revisited, applying a Chapman-Enskog type expansion 
to achieve the closure for heat flux. The resulting gradient-based closure performs favorably 
against previously employed closures in regions of shocks when compared to the kinetic results 
obtained from Direct Simulation Monte Carlo simulations. The 10-moment model can capture 
finite kinetic effects due to non-Maxwellian velocity distribution functions, as compared to the 
5-moment Navier-Stokes equations, and remains hyperbolic-parabolic with real wave speeds 
under all initial conditions. Self-consistent kinetic boundary conditions are derived without 
consideration of a distinct Knudsen layer. The model is applied to a number of canonical 
gasdynamics problems in one and two dimensions such as steady normal and oblique shocks, 
as well as the Sod shock tube problem.

1. Introduction

Fluid models are popular in the fields of gas and plasma dynamics, particularly due to their computational cost advantage 
over kinetic models [1,2]. This efficiency is achieved by solving for the local bulk properties of the flow as opposed to tracking 
myriad macroparticles directly. One of the major challenges in fluid models is capturing inherently kinetic effects that result in 
non-Maxwellian velocity distribution functions (VDFs), which arise at higher Knudsen numbers when particles are not able to fully 
equilibrate. Such flows are encountered in various rarefied gases, including semiconductor manufacturing processes [3], high-altitude 
flights [4] and many laboratory and astrophysical plasma environments [5,6]. Development of fluid models that can better capture 
finite kinetic effects can greatly enhance the predictive modeling capabilities of studying systems far from equilibrium.

Typical fluid models are derived by taking the zeroth, first, and contracted second moments of a kinetic transport equation, 
such as the Boltzmann equation, yielding transport laws for mass, momentum, and energy, respectively. The description of the 
fluid is complete when the transport laws are coupled with a collision operator that defines the sources and sinks of fluid quan-

tities. Higher-order moment models retain additional moments of the transport equation, which correspond to deviations from an 
isotropic Maxwellian VDF; the behavior of these equations is described in fundamental textbooks [7–9]. Higher-order moment mod-

els (HOMMs) are an attractive approach for handling continuum-kinetic transition regimes because they maintain a hyperbolic form 
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similar to the classic Euler and Navier-Stokes (NS) equations, but can directly capture the evolution of a non-Maxwellian distribution 
function. The fundamental obstacle of fluid moment models, however, is the closure problem. The closure problem arises because 
the transport equations inevitably require information about the next higher-order moment, which is not explicitly solved for in the 
system. Oftentimes, an assumption must be made about the VDF to allow for the closure of the higher-order terms that appear in the 
fluid formulation. The most physically accurate and computationally achievable methods for achieving closure has been a subject of 
much research [8,10–14], though some recent works have also neglected heat flux and higher order moments [15–17].

Intuitively, capturing more moments of the distribution function should only increase the fidelity of the simulation, since more in-

formation about the VDF is retained. However, the description of the set of partial differential equations (PDEs) produced by HOMMs 
would not be complete without examining their classification as hyperbolic, parabolic, or elliptic. When constructing HOMMs, the 
PDEs may have a combination of advection (first-order), diffusion (second-order), and source terms. The advection term is usually 
referred to as the inviscid flux, the diffusion term usually arises from viscous (collisional) effects, and the source terms can be linear 
or nonlinear depending on the collisional and external processes that are taken into account. The fluxes correspond to the transport 
of information through the system and are thus dependent on gradients of flow quantities, while sources are typically comprised of 
external body forces or local collisional effects. These two terms are often dealt with separately since they are fundamentally differ-

ent processes; the discussion of hyperbolicity will only consider the inviscid flux terms because they primarily contain the spatial 
gradients that determine the form of the PDE. However, a full solution to the set of PDEs must also take into account the viscous 
fluxes as well as sources terms, which can make the resulting PDE linear, parabolic, or hyperbolic.

The key challenge for HOMMs is whether the constructed PDE is well-posed. The criteria for a well-posed, time-dependent set of 
PDEs are that (i) a solution exists, (ii) the solution is unique, and (iii) the solution varies continuously when varying initial conditions. 
The eigenvalues of the set of PDEs can classify it as well-posed or ill-posed depending on the conditions of the problem. For instance, 
if the eigenvalues are all real, the initial value problem is well-posed, and thus admits a unique solution under all initial conditions. 
Such hyperbolic PDEs have eigenvalues, eigenvectors, and characteristics, which can be interpreted as information propagating at 
various speeds through the system, thus generating wave-like solutions. For an ill-posed initial value problem, when one tries to 
propagate the system forward in time, solutions may not always exist without knowing conditions at later times, and any solution 
may not be unique. For specific HOMMs, one may find the eigenvalues of the inviscid fluxes to be complex, resulting in an ill-posed 
initial value problem and a loss of hyperbolicity. While some HOMMs are still usable within their domain of hyperbolicity [18], 
the loss of hyperbolicity with certain initial conditions limits the applications of such models. As shown later, when higher-order 
moments are considered, the closure becomes critical as the Knudsen number increases, i.e., the flow becomes less collisional. The 
higher-order moments (e.g., heat flux) are often diffusive (second-order) in nature. Hence, the flux terms in HOMMs can become a 
set of hyperbolic-parabolic equations rather than purely hyperbolic. A physical justification for this form is provided in Section 2.3.2.

One of the most well-known closures was proposed by Grad [8] and describes the VDF in terms of polynomial expansions 
about the equilibrium Maxwellian VDF. Having the Maxwellian VDF as the leading-order term is physical because according to 
Boltzmann’s 𝐻 -theorem, the Maxwellian VDF is the distribution that results in maximum entropy in the presence of intraspecies 
binary collisions. In other words, through many binary collisions, any particle velocity distribution will relax to a Maxwellian VDF. 
Thus, with sufficient collisions, the distribution will be near-Maxwellian and so the Maxwellian VDF can be taken as an equilibrium 
solution around which perturbations can be made for arbitrary non-Maxwellian VDFs. Grad’s 13-moment system, however, can suffer 
from a breakdown of hyperbolicity due to the inviscid flux equations admitting imaginary eigenvalues when the distribution function 
is far from equilibrium; furthermore, the form of the distribution function is not positive for all velocities, making it unsuitable as 
being interpreted as a probability distribution function [19]. Additionally, the 13-moment equations require boundary conditions for 
the heat flux in addition to the fluid properties (e.g., mass, momentum, and temperature); there have been attempts for physically 
motivated and accurate boundary condition models [20], but nonphysical results have been observed when far from equilibrium. 
Further regularized versions of Grad’s closure have attempted to remedy these shortcomings through further Chapman-Enskog type 
expansions and have found a number of applications, but they still lack a complete description of boundary conditions and are not 
guaranteed to remain hyperbolic under all conditions [21,22].

Another option is closure via the assumption of a Pearson IV (PIV) distribution [23]. Compared to the Grad closure, it has 
been shown to be hyperbolic and positive definite for a wider range of conditions. While the set of PIV distributions includes a 
Maxwellian VDF in its parameter space, there is no fundamental physical justification (cf. 𝐻 -theorem) to assume that a PIV VDF 
should arise under any physical circumstances, particularly for gas dynamics problems. The PIV distribution does not necessarily 
satisfy maximum entropy nor does it arise from perturbation theory about equilibrium [23]. Furthermore, certain parameters that 
define the distribution, namely, skew and kurtosis, are not strictly closed-form functions of the central moments of the distribution. 
For this reason, iterative solvers are typically used to determine these parameters in terms of lower-order moments, allowing for 
the calculation of higher-order moments [13]. Analytical approximations have also been used, but are employed as a numerical 
convenience rather than a result derived from first principles [23].

In the Quadrature Method of Moments (QMOM), the distribution function is instead assumed to be the weighted sum of 𝑁 kernel 
functions (nodes). Thus, closure is obtained through the ansatz of specifying the distribution function. One option is to use a Dirac 
delta kernel, where the 2𝑁 unknowns (weights and positions of the nodes) are then iteratively solved for using a set of 2𝑁 known 
moments through a nonlinear set of equations [24,25]. Another option is to use a Gaussian kernel, which allows for nonzero VDF 
tails at the cost of increasing the number of equations to 2𝑁 + 1; this formulation is useful when considering reactions facilitated 
by high-energy tail populations [26]. However, it has been observed that results obtained using QMOM may converge slowly with 
the number of nodes, and furthermore have been observed to exhibit numerical artifacts (e.g., subshocks, oscillations) dependent on 
2

number of nodes, grid resolution, and convergence tolerance [27,28].
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The search for a more robust physically-motivated closure has led to the development of so-called maximum entropy methods, 
by assuming a form of the distribution function to mandate stability and satisfy the 𝐻 -theorem. Such methods have shown great 
success in their ability to reconstruct a distribution function and capture particle dynamics [12,29,30]. However, the equations 
can admit arbitrarily high wavespeeds requiring a restrictively small timestep and often involve iterative optimization, which can 
garner a high computational cost, although approximate interpolative techniques have been posed as a way to circumvent the 
costly calculations [30,31]. Furthermore, Junk showed that beyond the 10-moment system, there are physically-realizable sets of the 
macroscopic moments (density, pressure, heat flux etc.) for which there is no valid maximum-entropy distribution [32,33]. Thus, 
within the hierarchy of physically-motivated maximum entropy models, the 10-moment system captures the most information with 
the distribution function still guaranteed to exist (and, in fact, has an analytical form), and that all of the inviscid evolution equations 
remain hyperbolic under all physically realizable conditions.

Another important application of the fluid moment models is ionized gases, i.e., plasmas. In particular, the interaction of electric (
�⃗�
)

and magnetic 
(
�⃗�
)

fields can create an �⃗� × �⃗� drift thus modifying the plasma transport (e.g., conductivity and diffusivity) 
in different directions. For the fluid models, typically for electrons, the generalized Ohm’s law or drift-diffusion approximation 
has been widely used [34,35]. However, it has been recently found that such simplified models are unable to capture nonlinear 
dynamics that lead to deviations from classical theory [34]. The 10-moment model is well-suited to capture shear-driven transport 
and instabilities in plasmas, since it can explicitly capture the off-diagonal pressure tensor elements which correspond to shear 
terms. Particularly, the presence of magnetic fields often creates significantly anisotropic distribution functions [7]. However, due 
to the collective behavior within plasmas and the long-range of the electromagnetic fields, there exist a wide range of collisionless

phenomena for which the previously discussed methods, which require a collisional ansatz, are invalid. In such regimes, non-local 
closures are required, which often take the form of specifying a characteristic wavenumber of interaction. This method was pioneered 
by Hammett and Perkins [36] and has been applied to so-called ‘Landau fluid models’ which are able to capture phase mixing and 
Landau damping [37,38]. In addition, the non-local theory has been extended to collisionless energy transport in the 10-moment 
model for plasmas [39]. In order to apply the 10-moment model to multi-component ionized gases, it is necessary to develop a 10-

moment model with non-reacting gases by benchmarking against conventional 5-moment (Navier-Stokes) and kinetic results, which 
can be obtained using Direct Simulation Monte Carlo (DSMC).

The main challenge of the 10-moment model is the closure for higher-order moment terms which are not explicitly captured, 
i.e., heat flux, the third velocity moment. In this paper, we employ Chapman-Enskog type expansion using the ellipsoidal-statistical 
Bhatnagar-Gross-Krook (ES-BGK) collision operator [11], which results in a gradient-based closure for the heat flux. In Section 2, we 
discuss the governing equations for our fluid and DSMC simulations and describe the details of the heat flux closure. In Section 3, we 
describe the numerical methods and boundary conditions. In Sections 4–6, we present the results of applying the fluid and kinetic 
models to canonical gasdynamic problems. The 10-moment model is applied to one- and two-dimensional Riemann problems and 
the results are compared to those obtained from DSMC and the Navier-Stokes model.

2. Governing equations

In this paper, we compare the 10-moment results with the 5-moment (such as Navier-Stokes, Euler equations) and kinetic (DSMC) 
results. Performing a qualitative comparison, i.e., benchmarking, requires discussions of the numerical parameters chosen. For bench-

marking, we consider a monatomic gas for the working gas (𝛾 = 5∕3, i.e., three degrees of freedom for translational energy) and only 
collisions between like particles (i.e., one species and no intermolecular collisions). In the DSMC, a variable hard-sphere (VHS) col-

lision model is used. While in DSMC the collisional transport is performed through individual particle collisions, the fluid approach 
describes the ensemble of particles. Thus, how the microscopic particle collisions lead to the macroscopic effects of collisional drag 
and momentum and energy transport coefficients (e.g., viscosity and heat flux) in the fluid approach is discussed.

2.1. 10-moment equations

The transport and collisions of particles are described using the kinetic transport equation:

𝜕𝑓

𝜕𝑡
+ 𝑣𝑖

𝜕𝑓

𝜕𝑥𝑖
+
𝐹𝑖

𝑚

𝜕𝑓

𝜕𝑣𝑖
=  (𝑓 ) , (1)

where 𝑓 = 𝑓 (𝐱, 𝐯, 𝑡) is the distribution function as a function of position, velocity and time, 𝐹𝑖 is the force acting on the species of mass 
𝑚, (𝑓 ) is a collision operator describing the collisional evolution of 𝑓 , and the subscripts 𝑖 = {𝑥, 𝑦, 𝑧} indicate Einstein summation 
notation. By taking velocity moments of this equation assuming no applied forces (𝐹𝑖 = 0) and notably making no assumptions about 
the form of 𝑓 , we obtain the following transport equations of the fluid moments:

𝜕

𝜕𝑡
𝜌+ 𝜕

𝜕𝑥𝑖

(
𝜌𝑢𝑖
)
= (0), (2)

𝜕

𝜕𝑡

(
𝜌𝑢𝑖
)
+ 𝜕

𝜕𝑥𝑗

(
𝜌𝑢𝑖𝑢𝑗 + 𝑝𝑖𝑗

)
= (1)

𝑖
, (3)

𝜕 ( ) 𝜕 ( ) (2)
3

𝜕𝑡
𝜌𝑢𝑖𝑢𝑗 + 𝑝𝑖𝑗 +

𝜕𝑥𝑘
𝑢𝑘[𝜌𝑢𝑖𝑢𝑗 + 𝑝𝑖𝑗 ] + 𝑢𝑖𝑝𝑗𝑘 + 𝑢𝑗𝑝𝑖𝑘 + 𝑞𝑖𝑗𝑘 = 

𝑖𝑗
, (4)
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where (0), (1)
𝑖

and (2)
𝑖𝑗

are the zeroth, first and second moments of the collision operator, respectively; the density and bulk velocity 
are defined as

𝜌 ≡𝑚∫ 𝑓𝑑3v, 𝑢𝑖 ≡ 𝑚𝜌 ∫ 𝑣𝑖𝑓𝑑3v, (5)

and the pressure and heat flux as

𝑝𝑖𝑗 ≡𝑚∫ 𝑤𝑖𝑤𝑗𝑓𝑑3v, 𝑞𝑖𝑗𝑘 ≡𝑚∫ 𝑤𝑖𝑤𝑗𝑤𝑘𝑓𝑑3v, (6)

using the peculiar velocity 𝑤𝑖 = 𝑣𝑖 − 𝑢𝑖. The so-called conservative equations (Eqns. (2)–(4)) can be written succinctly in block-vector 
form as

𝜕𝐔
𝜕𝑡

+
𝜕𝐅𝑖
𝜕𝑥𝑖

= 𝐒, (7)

where 𝐔 is the vector of conservative variables, 𝐅𝑖 is the vector of conservative fluxes in the 𝑖 direction, and 𝐒 is the vector 
of conservative sources, only self-collisions in this study. Typically, the quantities 𝐔 = {𝜌, 𝜌𝑢𝑖, 𝜌𝑢𝑖𝑢𝑖 + 𝑝𝑖𝑖} are called conservative 
because they directly correspond to conservation of mass, momentum, and energy throughout the system, which results in a 5-

moment system. This concept is generalized to the 10-moment system with the variables 𝐔 = {𝜌, 𝜌𝑢𝑖, 𝜌𝑢𝑖𝑢𝑗 + 𝑝𝑖𝑗} even though, 
strictly speaking, the elements of the total stress tensor, 𝜌𝑢𝑖𝑢𝑗 + 𝑝𝑖𝑗 , are not individually conserved through collisions. The full set 
of conservative 10-moment equations are exact up to conservation of mass and momentum, as the anisotropic pressure terms are 
solved for. This is an increase in fidelity over the perturbative closures used in the Navier-Stokes equations which use gradient-based 
approximations for the anisotropic pressure terms, while both the 10-moment and Navier-Stokes equations need closure for the heat 
flux.

On the other hand, the primitive variables can be defined as 𝚷 = {𝜌, 𝑢𝑖, 𝑝𝑖𝑗}. The conservative equations can be re-written in 
primitive form, through a change of variables, as

𝐷𝜌

𝐷𝑡
+ 𝜌
𝜕𝑢𝑖

𝜕𝑥𝑖
= 𝕔(0), (8)

𝐷𝑢𝑖

𝐷𝑡
+ 1
𝜌

𝜕𝑝𝑖𝑗

𝜕𝑥𝑗
= 𝕔(1)

𝑖
, (9)

𝐷𝑝𝑖𝑗

𝐷𝑡
+
(
𝑝𝑖𝑗
𝜕𝑢𝑘

𝜕𝑥𝑘
+ 𝑝𝑖𝑘

𝜕𝑢𝑗

𝜕𝑥𝑘
+ 𝑝𝑗𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘
+
𝜕𝑞𝑖𝑗𝑘

𝜕𝑥𝑘

)
= 𝕔(2)

𝑖𝑗
, (10)

where 𝐷
𝐷𝑡

= 𝜕

𝜕𝑡
+ 𝑢𝑖

𝜕

𝜕𝑥𝑖
denotes the material derivative, and the primitive sources can be derived to be

𝕔(0) = (0), (11)

𝕔(1)
𝑖

= 1
𝜌

((1)
𝑖

− 𝑢𝑖(0)
)
, (12)

𝕔(2)
𝑖𝑗

= (2)
𝑖𝑗

− 𝑢𝑖(1)
𝑗

− 𝑢𝑗(1)
𝑖

+ 𝑢𝑖𝑢𝑗(0). (13)

This form of the equations is useful because external forces, e.g., gravity, can accelerate the fluid but not increase the pressure 
(internal energy). For instance, if the 𝑧 direction is aligned with gravitational acceleration, (1)

𝑧 = 𝜌𝑔. If no source or sink exists in 
the mass conservation equation, (0) = 0. Thus, 𝕔(1)𝑧 = 𝑔, which is a nonzero source term in the primitive equations. In addition, the 
force results in nonzero work from bulk acceleration: (2)

𝑖𝑧
= (1)

𝑧 (𝑢𝑖 + 𝑢𝑧𝛿𝑖𝑧). However, 𝕔(2)
𝑖𝑧

= 0 since the acceleration does not affect 
the internal energy 𝑝𝑖𝑗 . In this case, due to the transformation between primitive and conservative variables, a numerical solution of 
the conservative form of the 10-moment equations with sources may incur more numerical error than a solution with the primitive 
form.

The primitive equations, Eqns. (8)–(10), are written in block-vector form as

𝜕𝚷
𝜕𝑡

+𝐀𝑖
𝜕𝚷
𝜕𝑥𝑖

= 𝚺, (14)

where 𝐀𝑖 is the matrix for the fluxes transformed under a change-of-basis to the primitive variables, and 𝚺 is the vector of primitive 
sources in Eqns. (11)–(13). See Appendix A for the derivation of the form of the matrix 𝐀𝑖 .

An eigenvalue analysis of the 10-moment system in the 𝑥 direction, e.g., from 𝐴𝑥, is presented and discussed in Appendix A [40]. 
The analysis reveals that the system admits 10 waves which propagate at five different characteristic velocities:

𝜆1,2,3,4 = 𝑢𝑥, (15)

𝜆5,7 = 𝑢𝑥 +
√
𝑝𝑥𝑥∕𝜌, 𝜆6,8 = 𝑢𝑥 −

√
𝑝𝑥𝑥∕𝜌, (16)

𝜆9 = 𝑢𝑥 +
√
3𝑝𝑥𝑥∕𝜌, 𝜆10 = 𝑢𝑥 −

√
3𝑝𝑥𝑥∕𝜌. (17)

The characteristic velocities in the 𝑦 and 𝑧 directions have similar forms with the diagonal pressure element in that direction 
4

instead of 𝑝𝑥𝑥. 𝜆1−4 describe waves which travel with the fluid bulk velocity; they encompass an entropy wave associated with 𝜌, 
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and convective waves associated with transverse pressures 𝑝𝑦𝑦, 𝑝𝑦𝑧, and 𝑝𝑧𝑧, which do not directly couple in the 𝑥 direction. 𝜆5−8
describe slow shear waves, which transport transverse information in the 𝑥 direction; they encompass waves associated with 𝑣, 𝑤, 
𝑝𝑥𝑦, and 𝑝𝑥𝑧. Note that these waves do not affect the longitudinal pressure, but they are advected up- and down-stream at a thermal 
speed. Finally, 𝜆9,10 are the fast acoustic waves which affects all primitive variables and are associated with 𝑢, and 𝑝𝑥𝑥; they carry 
information about the longitudinal velocity (i.e., 𝑣𝑥 and 𝑣2𝑥) being transported in the 𝑥 direction and move at the fastest wavespeed. 
In the collisional limit, the 10-moment acoustic waves reduce to the classical Euler acoustic waves of speed 

√
5𝑝∕3𝜌, while the 

shear waves associated with off-diagonal pressures vanish [40]. Qualitatively, the Euler acoustic waves can be thought of as the 10-

moment acoustic wave for 𝑝𝑥𝑥 moving at 𝑢 ±
√
3𝑝𝑥𝑥∕𝜌 being slowed because the wave needs to also excite the transverse on-diagonal 

pressures, which travel more slowly. It is important to note that under all physically permissible conditions, {𝜌, 𝑝𝑥𝑥, 𝑝𝑦𝑦, 𝑝𝑧𝑧} > 0, so 
the wavespeeds are necessarily real and finite-valued and thus the inviscid portion of the 10-moment system is hyperbolic. This is 
particularly important for numerical solution of these equations, which will be described in Section 2.3.

2.2. Collision operator: ellipsoidal-statistical BGK model

A key measure in the validity of the fluid continuum approximation is the Knudsen number, Kn = 𝜆MFP∕𝐿, where 𝜆MFP is the 
particle mean free path and 𝐿 is a characteristic physical length scale. For small Kn, particles experience many collisions as they 
traverse the relevant domain, and so they can be considered to be in equilibrium with one another, thus warranting an equilibrium 
fluid formulation. For large values of Kn, particles may not equilibrate between one another and assumptions about near-Maxwellian 
VDFs must be relaxed. Thus, an accurate collision operator is key to the implementation of fluid models.

A 5-moment system that uses a gradient-based closure (e.g., Navier-Stokes equations) is typically valid for Knudsen number 
Kn≪ 1, resulting in a small deviation of the VDFs from the equilibrium Maxwellian VDF. Because the 10-moment system evolves 
the anisotropic pressure, it is expected that it can more accurately capture non-Maxwellian flows. While the 10-moment system is 
exact up to the anisotropic pressure, the heat flux, which corresponds to the third moment of the VDF, must be closed. In addition, 
the collisional terms must be defined. The Boltzmann operator, which is valid for binary, elastic collisions, is given by

𝐵(𝑓1, 𝑓2) =∬ 𝑔(𝑓 ′1𝑓
′
2 − 𝑓1𝑓2)𝜎𝑑Ω𝑑

3v2, (18)

where 𝑓 ′ is the post-collision distribution function, subscripts 1 and 2 denote two different particles, 𝑔 = |v2 − v1| is the magnitude 
of the relative velocity, 𝜎 is the collision cross section, and 𝑑Ω is the differential solid angle of the deflected particle. In general, 
this collision integral is difficult to evaluate but under certain assumptions, it can be evaluated using the theory by Chapman and 
Cowling [7,41]. Recent work in plasma simulations has evaluated this integral in the calculation of collision frequencies of the various 
interactions extant in plasmas [42]. Constructing the closure model considering a Boltzmann operator is reported in References [7]

and [43] and will be reserved for future work. Instead, we employ the Bhatnagar-Gross-Krook (BGK) operator [10]

(𝑓 ) = 1
𝜏

(
𝑓 relax − 𝑓

)
, (19)

where 𝜏 is the characteristic relaxation time, and 𝑓 relax is the relaxation VDF that the non-Maxwellian 𝑓 locally relaxes towards 
through collisions. The BGK operator is a mathematical simplification that does not physically capture the particle kinetics but is 
designed to conserve mass, momentum, and energy. It is typically taken that 𝑓 relax = 𝑓𝑀 is the equilibrium Maxwellian distribution:

𝑓 relax = 𝑓𝑀 ≡ 𝜌
𝑚

(
𝜌

2𝜋𝑝

)3∕2
exp

(
− 𝜌
2𝑝

w2
)
, (20)

where 𝑝 = 𝑝𝑖𝑖∕3 is the isotropic pressure and 𝑝 = 𝜌𝑅𝑇 = 𝑛𝑘𝐵𝑇 (here 𝑅 = 𝑘𝐵∕𝑚 is the specific gas constant, 𝑛 = 𝜌∕𝑚 is the number 
density, 𝑘𝐵 is the Boltzmann constant, and 𝑇 is the isotropic temperature). The model describes the relaxation of the distribution 
function towards equilibrium with characteristic time 𝜏 . The characteristic time is chosen so that in the continuum limit, the correct 
coefficient of viscosity 𝜇 = 𝜏𝑝 is predicted. This model weakly satisfies Boltzmann’s 𝐻 -theorem and correctly predicts the fluid 
behavior in the two limits. (1) 𝜏 → 0: infinitely collisional and immediate relaxation to Maxwellian and (2) 𝜏 →∞: collisionless and 
thus no effect of the collision operator. A significant limitation of the BGK model, however, is that it incorrectly predicts a Prandtl 
number Pr = 𝑐𝑝𝜇∕𝜅 = 1, where 𝑐𝑝 is the specific heat at constant pressure and 𝜅 is the coefficient of thermal conductivity. This value 
of the Prandtl number is in contrast to the results from the Boltzmann operator and experimental evidence, both of which show Pr

closer to 2∕3.

Another approximate collision term proposed by Holway [11] is the ellipsoidal-statistical BGK (ES-BGK) operator, which preserves 
the simple form of the BGK model but allows for setting a physically consistent Pr ≠ 1. The relaxation VDF is considered to be an 
ellipsoidal distribution function:

𝑓 relax = 𝑓𝐸𝑆 ≡ 𝜌
𝑚

[
𝜌3

(2𝜋)3 |℘|
]1∕2

exp
(
−𝜌
2
𝑤𝑖℘

−1
𝑖𝑗 𝑤𝑗

)
, (21)

where |℘| and ℘−1 are the determinant and the inverse, respectively of a pressure tensor ℘, defined as
5

℘𝑖𝑗 = (1 − 𝜂)𝑝𝛿𝑖𝑗 + 𝜂𝑝𝑖𝑗 , (22)
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and 𝜂 is a free parameter. This form of the modified relaxation VDF retains conservation of mass, momentum, and energy, but allows 
one to achieve a physically consistent Prandtl number, Pr = (1 − 𝜂)−1 by tuning 𝜂 [11,44]. A derivation of this relationship for the 
10-moment model is presented in the next section.

2.3. Closure

The equations for conservation of mass and momentum, Eqns. (2)–(3), are exact in that no assumptions have been made on any 
of the variables, unlike Navier-Stokes-like equations where assumptions are made on the form of shear stress, which comes from an 
anisotropic pressure tensor. The remaining six equations for the full pressure tensor (note: 𝑝𝑖𝑗 = 𝑝𝑗𝑖), Eqn. (4), would also be exact if 
the form of the collisions, , and heat flux, 𝑞𝑖𝑗𝑘, are known. A higher fidelity option is to take the third order moment of the kinetic 
transport equation so that the heat flux tensor is modeled directly, adding ten more equations to the 10-moment system. However, 
even if the heat flux equation is solved, the closure of the heat flux equation, i.e., closure for the fourth moment would still remain 
a question [45]. Another option is to consider the contracted heat flux 𝑞𝑖𝑘𝑘, which adds three equations into the 10-moment system, 
making it a 13-moment system [42]. The further addition of a contracted fourth moment, 𝑟𝑖𝑖𝑗𝑗 , yields the 14-moment system that is 
often used for maximum-entropy formulations [12,46]. However, while taking higher order moments may capture the physics with 
higher fidelity, the key limitation is that the inviscid portion of the system may lose strict hyperbolicity, i.e., in general, the system 
can admit singular and imaginary wave speeds. Furthermore, as mentioned above, Junk proved that above the 10-moment system, 
there are certain sets of fluid moments, i.e., {𝜌, 𝑢𝑖, 𝑝𝑖𝑗 , 𝑞𝑖𝑗𝑘, etc.}, for which there is no suitable definition for a maximum-entropy 
distribution, or in other words, there are distribution functions with negative probability densities or singular coefficients that have 
lower entropy than any physically suitable distribution function [32,33].

2.3.1. Chapman-Enskog expansion

In this study, the 10-moment system is chosen as a step to expand the capability of Navier-Stokes (5-moment) solvers for systems 
farther from equilibrium, i.e., incorporating higher Knudsen number effects. The model no longer requires explicit description of 
the viscosity, but still requires closure for the heat flux (third moment). There are various ways to perform the closure; one can 
expand about a Maxwellian VDFs or other equilibrium distributions in terms of polynomials or spherical harmonics [23,31,47,48]. 
As an ansatz, we will perform a Chapman-Enskog type closure, which is an expansion in terms of the Knudsen number, using the 10-

moment equations and assuming perturbation about an isotropic Maxwellian distribution following a similar derivation in Ref. [1]. 
The key hypothesis is that the unperturbed distribution function should be a Maxwellian to satisfy the Boltzmann 𝐻 -theorem. 
This assumption is not trivial, as previous work has been done performing a perturbation around a Gaussian distribution [31,46], 
a discussion of which is presented in Section 4.2.2.

We begin by nondimensionalizing Eqn. (1) using the ES-BGK operator as shown in Eqn. (19),

𝜉

(
𝜕

𝜕𝑡
𝑓 + �̂�𝑖

𝜕

𝜕�̂�𝑖
𝑓 + 𝐹𝑖

𝜕

𝜕�̂�𝑖
𝑓

)
= 1
𝜏

(
𝑓𝐸𝑆 − 𝑓

)
, (23)

where reference values for length, velocity and relaxation time are used for nondimensionalized parameters as follows,

𝑓 ≡ 𝑓∕(𝑣−3
ref
𝑛ref

)
, �̂� ≡ 𝑥∕𝐿ref, �̂� ≡ 𝑣∕𝑣ref, 𝑡 ≡ 𝑡∕(𝑣−1ref

𝐿ref

)
, 𝐹 ≡ 𝐹∕(𝑚𝑣2

ref
𝐿−1

ref

)
, 𝜏 ≡ 𝜏∕𝜏ref, (24)

and 𝜉 is a smallness parameter:

𝜉 =
𝑣ref𝜏ref

𝐿ref

. (25)

Here, 𝜉 is similar to the Knudsen number when 𝑣ref𝜏ref is chosen to equal the mean free path. Thus, under the assumption that 𝑓 can 
be expressed as a perturbation about a Maxwellian, we may write

𝑓 = 𝑓𝑀
(
1 + 𝜉𝜙1 + 𝜉2𝜙2 +…

)
, (26)

where 𝜙𝑛 is the 𝑛th order perturbation function. Substituting Eqn. (26) into Eqn. (23) with no external forces, and only retaining 
terms to first order in 𝜉, we can arrive at equation for the first-order perturbation

𝜉

(
𝜕

𝜕𝑡
𝑓𝑀 + �̂�𝑖

𝜕

𝜕�̂�𝑖
𝑓𝑀
)
= 1
𝜏

(
𝑓𝐸𝑆 − 𝑓𝑀 − 𝑓𝑀𝜉𝜙1

)
. (27)

It is to be noted that the collisional equilibrium distribution, 𝑓𝐸𝑆 , and the leading-order unperturbed distribution, 𝑓𝑀 , do not cancel 
out exactly, and the factor of 𝜉 cannot be cancelled out. The ES-BGK approach is used to derived 5-moment Navier-Stokes system in 
Ref. [49].

To eliminate the derivatives of 𝑓𝑀 from Eqn. (27), we note that 𝑓𝑀 , as shown in Eqn. (20), is a function of only 𝜌, 𝑢𝑖, and 𝑝, 
and the derivatives of 𝑓𝑀 can be written, using the chain rule, in terms of derivatives of the primitive quantities:

𝜕 𝑀 𝜕𝑓𝑀 𝜕𝜌 𝜕𝑓𝑀 𝜕𝑢𝑖 𝜕𝑓𝑀 𝜕𝑝
6

𝜕𝜁
𝑓 =

𝜕𝜌 𝜕𝜁
+
𝜕𝑢𝑖 𝜕𝜁

+
𝜕𝑝 𝜕𝜁

, (28)
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where 𝜁 = 𝑡, 𝑥𝑖. Rearranging Eqns. (2)–(4) to isolate the temporal derivatives of the primitive variables {𝜌, 𝑢𝑖, 𝑝 = 𝑝𝑖𝑖∕3} and dropping 
the second-order dependence on 𝑞𝑖𝑗𝑘 yields

𝜕𝜌

𝜕𝑡
= −𝜌

𝜕𝑢𝑖

𝜕𝑥𝑖
− 𝑢𝑖

𝜕𝜌

𝜕𝑥𝑖
, (29)

𝜕𝑢𝑖

𝜕𝑡
= −1
𝜌

𝜕𝑝𝑖𝑗

𝜕𝑥𝑗
− 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
, (30)

𝜕𝑝

𝜕𝑡
= −2

3
𝑝𝑖𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝑝
𝜕𝑢𝑖

𝜕𝑥𝑖
− 𝑢𝑖

𝜕𝑝

𝜕𝑥𝑖
. (31)

Note that we only require the time derivative of 𝑝, not 𝑝𝑖𝑗 , but it is expressed in terms of the full pressure tensor 𝑝𝑖𝑗 . Using 
Eqns. (28)–(31) in Eqn. (27), yields after redimensionalization:

𝜉𝜙1𝑓
𝑀 = −𝜏𝑓𝑀

[(
𝜌𝑤𝑖𝑤𝑗

𝑝
−
𝑝𝑖𝑗

𝑝

𝜌𝑤2

3𝑝
+
𝑝𝑖𝑗

𝑝
− 𝛿𝑖𝑗
)
𝜕𝑢𝑖

𝜕𝑥𝑗
+𝑤𝑗
(
𝜌𝑤2

2𝑝
− 5

2

)
𝜕

𝜕𝑥𝑗
ln

(
𝑝

𝜌

)]
+
(
𝑓𝐸𝑆 − 𝑓𝑀

)
. (32)

The canonical Chapman-Enskog [1] perturbation can be recovered under substitution of 𝑓𝐸𝑆 → 𝑓𝑀 and 𝑝𝑖𝑗 → 𝑝𝛿𝑖𝑗 in Eqn. (32). The 
additional pressure-tensor dependent terms correspond to anisotropy in the viscosity tensor. It is to be noted that this closure remains 
a first-order perturbative closure around a Maxwellian, and thus the assumptions on the smallness of 𝜉 break down when considering 
strongly non-equilibrium flows. As mentioned above, a general closure for high Knudsen number (Kn≳ 0.1) would require treatment 
of nonlocal transport; however, the present study will focus on demonstrating the efficacy of the Maxwellian closure in Eqn. (32)

despite this caveat.

2.3.2. Heat flux tensor

Using the first-order approximation of 𝑓 ≃ 𝑓𝑀
(
1 + 𝜉𝜙1

)
, where 𝜙1 is as in Eqn. (32), the heat flux can be calculated by taking 

the third central velocity moment:

𝑞𝑖𝑗𝑘 = −𝜏𝑝
[
𝛿𝑖𝑗
𝜕

𝜕𝑥𝑘

(
𝑝

𝜌

)
+ 𝛿𝑖𝑘

𝜕

𝜕𝑥𝑗

(
𝑝

𝜌

)
+ 𝛿𝑗𝑘

𝜕

𝜕𝑥𝑖

(
𝑝

𝜌

)]
. (33)

It is to be noted that the third central moment vanishes for both 𝑓𝐸𝑆 (Eqn. (21)) and 𝑓𝑀 (Eqn. (20)), and furthermore that the 
first gradient based-term, i.e., 𝜕𝑢𝑖

𝜕𝑥𝑗
, in Eqn. (32) is an even function of 𝑤. Thus, the contribution to the third-moment heat flux is 

only from the second gradient-based term, i.e., 𝜕
𝜕𝑥𝑗

ln (𝑝∕𝜌), as shown in Eqn. (33). The form of the heat flux is parabolic in nature, 
which may seem contrary to the convenient mathematical properties of purely hyperbolic systems, i.e., characteristic curves and 
a solution describable purely through propagation of waves of finite speed. The parabolic term effectively introduces an infinitely 
large wavespeed (cf. parabolic PDEs). However, while purely hyperbolic systems of equations have many advantages, having limited 
finite (real) wavespeeds may not be suitable to capturing all of the particle dynamics. Particularly for fluids, there would inevitably 
be high-energy particles in the tails of distributions with speeds greater than the maximum wavespeed of the set of PDEs (cf. speed 
of sound). Hence, parabolic source terms may allow for the capture of effects not describable by purely hyperbolic systems. Care 
must be taken, however, that the closed system of equations does not admit unstable wavenumbers or infinite spatial wavespeeds; a 
complete dispersion analysis of the closed 10-moment equations is reserved for future work.

2.3.3. Prandtl number

While the heat flux tensor obtained in Eqn. (33) can be directly applied in the 10-moment system, the Prandtl number is obtained 
by taking the ratio of the 5-moment heat flux and viscosity. Using Eqn. (33), the contracted heat flux can be obtained as

𝑞𝑖 =
⟨
𝑤2

2
𝑤𝑖

⟩
= 1

2
𝑞𝑖𝑘𝑘 = −𝜅 𝜕𝑇

𝜕𝑥𝑖
, (34)

where

𝜅 = 5𝜏
2
𝑝𝑘𝐵
𝑚

(35)

is known as the thermal conductivity.

While the anisotropic pressure tensor is solved for directly in the 10-moment model (Eqn. (4)), we would like to compare the 
results from the Chapman-Enskog expansion to a Navier-Stokes formulation to determine an effective Prandtl number. The second 
central velocity moment (i.e., Eqn. (6)) can be derived using Eqn. (32) as

𝑝𝑖𝑗 = (1 − 𝜂)𝑝𝛿𝑖𝑗 + 𝜂𝑝𝑖𝑗 − 𝑡𝑖𝑗 , (36)

where 𝜂 is the free parameter in the ES-BGK model (Eqn. (22)) and 𝑡𝑖𝑗 is the deviatoric stress tensor that appears in the Navier-Stokes 
7

equations:
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𝑡𝑖𝑗 = 𝜏𝑝
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
− 2

3
𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗

)
. (37)

Upon rearranging, one obtains that

𝑝𝑖𝑗 − 𝑝𝛿𝑖𝑗 = − 𝜏𝑝

1 − 𝜂

(
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
− 2

3
𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗

)
. (38)

Therefore, the use of the ES-BGK model has effectively reduced the coefficient of viscosity, 𝜇 = 𝜏𝑝, by a factor of (1 − 𝜂), while the 
heat flux is not affected by 𝜂. Thus, the Prandtl number for the ES-BGK closure of monatomic gases can be written as

Pr =
𝑐𝑝𝜇

𝜅
=
(
5𝑘𝐵
2𝑚

)(
𝜏𝑝

1 − 𝜂

)(
5𝜏𝑝𝑘𝐵
2𝑚

)−1
= 1

1 − 𝜂
, (39)

where 𝑐𝑝 = 5𝑘𝐵∕2𝑚 and 𝛾 = 5∕3 for an ideal monatomic gas. This illustrates the utility of the ES-BGK operator. As mentioned above, 
for the conventional BGK, i.e., 𝜂 = 0, the predicted Prandtl number becomes 1, which is not physically representative; many gases, 
particularly monatomic gases, have Pr ≃ 2∕3. This Prandtl number is also observed in DSMC simulations using hard sphere collisions 
as shown/discussed in Refs. [50] and [51]. We emphasize that the ES-BGK model is a mathematical simplification compared to 
the closure assuming the Boltzmann operator. While there are (past and ongoing) studies that propose the Boltzmann closure for 
intraspecies and interspecies collisions [42], the goal of this paper is to demonstrate the 10-moment system with the heat flux closure 
model by benchmarking against 5-moment (Navier-Stokes) and kinetic (DSMC) results. Derivation and implementation of higher 
fidelity closure models (e.g., Boltzmann collision operator [42]) and the closure for different types of collisional processes (e.g., 
intermolecular and Coulomb collisions) are reserved for future work.

2.3.4. Collisional transfer terms

For the purpose of benchmarking, in this paper, we have chosen Pr = 2∕3, i.e., 𝜂 = −1∕2, for the collisional closure in the 
10-moment model for consistency with the DSMC results for monatomic gases. The pressure tensor of the associated equilibrium 
distribution, Eqn. (22), is

℘𝑖𝑗
(

Pr = 2
3

)
= 3

2
𝑝𝛿𝑖𝑗 −

1
2
𝑝𝑖𝑗 . (40)

Comparing this to the Maxwellian pressure tensor, Eqn. (20) with ℘𝑖𝑗 (Pr = 1) = 𝑝𝑀
𝑖𝑗

= 𝑝𝛿𝑖𝑗 , it is seen that the ES-BGK model weighs 
the isotropic pressure in the collision operator more than in the BGK model. As 𝑓𝐸𝑆 is designed to have the same zeroth and first 
moments as 𝑓 , the moments of the ES-BGK collision operator yield

(0)
ES

= 0 (41)

(1)
ES,𝑖

= 0 (42)

(2)
ES,𝑖𝑗

= 1
𝜏

(
℘𝑖𝑗 − 𝑝𝑖𝑗

)
= 1
𝜏

([
(1 − 𝜂)𝑝𝛿𝑖𝑗 + 𝜂𝑝𝑖𝑗

]
− 𝑝𝑖𝑗
)
= 1 − 𝜂
𝜏

(
𝑝𝛿𝑖𝑗 − 𝑝𝑖𝑗

)
= 1

Pr

𝑝𝛿𝑖𝑗 − 𝑝𝑖𝑗
𝜏

. (43)

As can be seen from Eqn. (43), Pr = 2∕3 results in a faster equilibration (i.e., smaller effective 𝜏) as compared to the Pr = 1 case. While 
the BGK operator is a mathematical simplification of the Boltzmann operator, setting Pr = 2∕3 in the 10-moment closure results in 
better agreement between 10-moment and kinetic results than Pr = 1.

The canonical 5-moment equations are recovered in the limit of 𝜏→ 0, which immediately damps any anisotropy and relaxes the 
non-equilibrium distribution to an equilibrium Maxwellian.

2.4. Relaxation time

For the 10-moment model, the characteristic relaxation time 𝜏 must be assigned as introduced in Eqn. (19) and shown in Eqn. (43). 
While a constant 𝜏 throughout the domain is mathematically simple, elastic binary intra-species collisions are dependent on the local 
temperature and density (or pressure). From classical kinetic theory [1], the mean free path for like-particle collisions in an ideal gas 
is given by

𝜆MFP =
1√

2𝜋𝑑2𝑛
, (44)

where 𝑑 is the kinetic diameter of a particle. Then, the collision frequency can be approximated as

𝜈 ≃
⟨𝑣⟩
𝜆MFP

∝ 𝑛
√
𝑇 ∝
√
𝑛𝑝, (45)

where ⟨𝑣⟩ is the particle average speed and the ideal gas equation of state is assumed. Considering that the characteristic relaxation 
time of the VDFs is proportional to the characteristic time for collisional events, i.e., 𝜏 ∝ 𝜈−1, the characteristic time can be written 
8

as
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𝜏

𝜏0
=
(
𝑛

𝑛0

)−0.5(
𝑝

𝑝0

)−0.5
, (46)

where 𝑛0 and 𝑝0 are problem-dependent reference values for number density and pressure and 𝜏0 is a free parameter used to vary 
the characteristic relaxation time. The choice of 𝜏0 for consistency with kinetic simulations is discussed in Section 2.5.

2.5. Direct Simulation Monte Carlo

To assess the ability of the 10-moment model to capture finite kinetic effects compared to the 5-moment system, we make 
a comparison of the fluid models to the kinetic transport equation whose approximate solution can be obtained from the DSMC 
simulations of a monatomic gas. Here, we consider argon (𝛾 = 5∕3, 𝑚 = 40 amu). The DSMC simulations in 1-D are performed as 
outlined in Ref. [51] using the No-Time-Counter (NTC) methods of Bird [52]. We employ the variable hard-sphere model to capture 
the known dependence of the collisional cross-section on the relative speed of particles:

𝑑 = 𝑑𝑟
(
𝑔𝑟
𝑔

)𝜔
, (47)

where 𝑑 is the particle diameter, 𝑑𝑟 is a reference diameter, 𝑔 is the relative speed between particles, 𝑔𝑟 is a reference speed, and 𝜔
is the power-law exponent. As shown in Ref. [51], the reference speed is determined as

𝑔2𝑟 =
2𝑘𝐵𝑇𝑟
𝑚

[Γ (2 −𝜔)]−1∕𝜔 , (48)

where 𝑇𝑟 is a reference temperature and Γ(𝑥) is the Gamma function. The power-law exponent 𝜔 = 0.2 is chosen in accordance with 
its good agreement to the experimental data of normal shock profiles of Alsmeyer [51,53].

To benchmark the 10-moment fluid model with the kinetic results, we need to define the reference diameter in such a way that 
is consistent with the characteristic relaxation time of the fluid, as used in Eqns. (19) and (46). Using the results of Chapman-Enskog 
theory with a BGK operator [1], the characteristic relaxation time in DSMC can be written as

𝜏DSMC = 𝜇
𝑝
=

√
2𝜌
𝜋𝑝
𝜆MFP =

√
2𝜌
𝜋𝑝

𝑚√
2𝜌𝜋𝑑2𝑟

= 𝑚

𝜋3∕2𝑑2𝑟
(𝜌𝑝)−1∕2 =

√
𝑚

𝜋3∕2𝑑2𝑟
(𝑛𝑝)−1∕2 , (49)

which directly corresponds to the scaling law in Eqn. (46). We want the DSMC and fluid models to have the same initial condition, 
i.e., 𝑚, 𝜌(𝑥, 𝑡 = 0), 𝑢𝑖(𝑥, 𝑡 = 0), and 𝑝𝑖𝑗 (𝑥, 𝑡 = 0); while 𝜏0,fluid is a fully independent free parameter and 𝜏0,DSMC is dependent on the 
reference diameter. Because the heat flux is the only term requiring closure in the 10-moment model, the values of 𝜏0,fluid and 𝜏0,DSMC

are chosen so that the estimates of the heat flux from the kinetic and fluid Chapman-Enskog theory are consistent. Thus, we seek 
to find a definition of the reference diameter 𝑑𝑟 that provides the same form of the thermal conductivity 𝜅 between the DSMC and 
10-moment models.

It can be deduced from Eqn. (49) that

𝜏DSMC =
Pr 𝜅DSMC

𝑐𝑝𝑝
, (50)

and thus by definition, the thermal conductivity for DSMC can be written as

𝜅DSMC =
5𝜏DSMC

2Pr

𝑝𝑘𝐵
𝑚
. (51)

By comparison with Eqn. (35), Eqn. (51) implies that

𝜏 = 𝜏DSMC
1
Pr
. (52)

This discrepancy is solely from the fact that the fluid equation is using the ES-BGK operator. Therefore, for DSMC simulations to be 
consistent with the 10-moment fluid model, the reference diameter in the DSMC is chosen as

𝑑2𝑟 =
𝑚

𝜌𝜋𝜏DSMC

√
𝜌

𝜋𝑝
= 𝑚

𝜌𝜋
(
Pr 𝜏fluid

)√ 𝜌

𝜋𝑝
, (53)

or, substituting in with Eqn. (46),

𝑑2𝑟 =
𝑚

𝜌0𝜋
(
Pr 𝜏0,fluid

)√ 𝜌0
𝜋𝑝0
, (54)
9

where the reference values are taken to be the same as the fluid model.
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2.6. 5-moment system

The 10-moment results are compared with DSMC (kinetic) to show how much non-Maxwellian effects the 10-moment system can 
capture. Simultaneously, we compare the 10-moment results with 5-moment systems, including Navier-Stokes and Euler, illustrating 
that the 10-moment system asymptotes to the 5-moment system in the limit of linear perturbation of the non-Maxwellian VDF.

2.6.1. Navier-Stokes equations

From the 10-moment equation system, the Navier-Stokes equations can be derived under two main assumptions. First, the 
anisotropic pressure is divided into the isotropic pressure and an approximate shear stress, i.e., 𝑝𝑖𝑗 → 𝑝𝛿𝑖𝑗 − 𝑡𝑖𝑗 so that

𝜕

𝜕𝑡

(
𝜌𝑢𝑖
)
+ 𝜕

𝜕𝑥𝑗

(
𝜌𝑢𝑖𝑢𝑗 + 𝑝𝛿𝑖𝑗 − 𝑡𝑖𝑗

)
= (1)

𝑖
, (55)

where the collisional drag (1)
𝑖

= 0 for self-collisions. The approximate shear stress tensor, 𝑡𝑖𝑗 can be obtained from the Chapman-

Enskog expansion in the limit of isotropic pressure [1]:

𝑡𝑖𝑗 = 𝜇
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
− 2

3
𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗

)
, (56)

where the coefficient of viscosity, 𝜇 = 𝜏𝑝 and the collision frequency is also calculated using Eqn. (46). In addition, the conservation 
of energy can be written as

𝜕

𝜕𝑡
(𝜌𝐸) + 𝜕

𝜕𝑥𝑖

[
𝜌𝑢𝑖𝐸 + 𝑢𝑗

(
𝑝𝛿𝑖𝑗 − 𝑡𝑖𝑗

)
+ 𝑞𝑖
]
= (2) = 1

2
(2)
𝑖𝑖
, (57)

where 𝜌𝐸 = (3𝑝 + 𝜌𝑢𝑖𝑢𝑖)∕2 is the total energy density and (2) is the net volumetric energy input, which vanishes for purely elastic 
intraspecies collisions, as there is no energy exchange between the system and the surroundings. A more sophisticated treatment of 
the Navier-Stokes closure using the Boltzmann collision operator has been done in previous work and yields the physically accurate 
value for the Prandtl number of 2∕3 [51]. To provide the highest-fidelity comparison for the 10-moment results, we employ Navier-

Stokes equations using the Boltzmann collision operator. While this choice may allow for a discrepancy between the Navier-Stokes 
and 10-moment solutions due to the different form of the collisional closure, it allows for the most robust demonstration of the merits 
of the 10-moment model. The Navier-Stokes heat flux is then given as,

1
2
𝑞𝑖𝑘𝑘 ≃ 𝑞𝑖 = −15

4
𝜏𝑝
𝜕

𝜕𝑥𝑖

(
𝑝

𝜌

)
. (58)

2.6.2. Euler equations

The 5-moment Euler system is equivalent to the Navier-Stokes system in the limit of 𝜏 → 0. Namely, there are no deviatoric 
stresses or heat flux and thus has no closure. This model takes the form of a purely hyperbolic set of transport equations for mass, 
momentum, and energy, i.e., {𝜌, 𝜌𝑢𝑖, 𝜌𝐸}, with no sources.

3. Numerical methods

The fluid equations, as shown in Eqns. (2)–(4), are numerically integrated forward in time explicitly using a finite-volume 
approach. By solving for flux of the conservative variables between volume elements, we can ensure that mass, momentum, and 
energy are conserved. However, the sources act directly on the primitive variables, corresponding to an isotropization of 𝑝𝑖𝑗 , not

𝑝𝑖𝑗 + 𝜌𝑢𝑖𝑢𝑗 ; therefore, it is logical that the source update should be performed directly on the primitive variables so as to avoid 
numerical errors between converting between primitive and conservative variables.

3.1. Time-stepping

Second-order Strang splitting is employed, wherein primitive variables are updated a half-timestep using only the sources, then 
the conservative variables are updated a full timestep using only the fluxes, then finally the primitive variables are updated the 
last half timestep using the sources again. For increased accuracy and to reduce spurious oscillations, each timestep is taken using 
the third-order strong stability-preserving Runge-Kutta (SSP-RK3) for stability [54,55]. Thus the advancement of the variables from 
timestep 𝑛 to 𝑛 + 1 is shown in Eqn. (59):

𝚷𝑛
Δ𝑡∕2

←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
Sources

𝚷′ →𝐔′ Δ𝑡
←←←←←←←←←←←←←←←←←←←←←←←→
Fluxes

𝐔′′ →𝚷′′ Δ𝑡∕2
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
Sources

𝚷𝑛+1, (59)

where Δ𝑡 is the timestep and 𝚷′ →𝐔′ and 𝚷′′ →𝐔′′ indicate transforming to the conservative variables from the primitive variables 
and vice versa, respectively. The discretized form of the source update of the primitive variables at cell index 𝓁 can be written as(

𝚷′
𝓁 −𝚷𝑛𝓁

)
= 𝚺
(
𝚷𝑛
)
, (60)
10

Δ𝑡∕2
Sources

𝓁
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where 𝚺 is the primitive source term shown in Eqn. (14). For neutral gases, where we only consider elastic collisions between 
like-particles, the source term for the anisotropic pressure contains relaxation to an isotropic Maxwellian:(

𝜕

𝜕𝑡
𝑝𝑖𝑗,𝓁

)
Sources

= 1
𝜏𝓁

(
𝑝𝓁𝛿𝑖𝑗 − 𝑝𝑖𝑗,𝓁

)
. (61)

To perform the inviscid flux updates, we employ Steger-Warming inviscid flux vector splitting [56], for which the details of the 
eigendecomposition of the 10-moment system have been described in previous works [40] and are reproduced in Appendix A. The 
fact that the eigenvalues remain real and finite under all conditions means that the equations remain hyperbolic and thus can be 
solved through extensions of established numerical schemes for the inviscid fluxes of hyperbolic PDEs.

For one-dimensional problems, assuming equidistant cells where the cell size is Δ𝑥, the discretized form of the flux update of the 
conservative variables at cell index 𝓁 is given by(

𝐔′′
𝓁 −𝐔′

𝓁

Δ𝑡

)
Fluxes

+
𝐅𝑥,𝓁+1∕2 − 𝐅𝑥,𝓁−1∕2

Δ𝑥
= 0, (62)

where 𝐅𝑥 is the flux function at cell interfaces including the inviscid and viscous fluxes. Using flux vector splitting, the flux function 
in Eqn. (62) can be written as,

𝐅𝑥
(
𝑥𝓁+1∕2

)
= 𝐅+

𝑥

[
𝐔𝐿
(
𝑥𝓁+1∕2

)]
+ 𝐅−

𝑥

[
𝐔𝑅
(
𝑥𝓁+1∕2

)]
+ 𝐅𝑥,𝑐

[
𝐔𝐿,𝐔𝑅,∇𝐔

]
, (63)

where 𝐅±
𝑥 are the rightward and leftward moving Steger-Warming fluxes, 𝐔𝐿∕𝑅 are the states reconstructed using Monotonic Upwind 

Scheme for Conservation Laws (MUSCL) with the van Leer harmonic limiter [57] at the left (𝐿) and right (𝑅) sides of the interface 
at position 𝑥𝓁+1∕2, and 𝐅𝑥,𝑐 is the viscous flux due to closure, i.e., 𝑞𝑖𝑗𝑘 for 10-moment and 𝑡𝑖𝑗 and 𝑞𝑘 for Navier-Stokes. The gradient 

values used to find 𝑞 and 𝑡 at cell interfaces are calculated using central differencing, i.e., 
(
𝜕𝑄

𝜕𝑥

)
𝓁+1∕2

=
(
𝑄𝓁+1 −𝑄𝓁

)
∕Δ𝑥. The values 

of 𝜏 and 𝑝 at the interface in Eqns. (33), (56), and (58) are calculated using the average of 𝐔𝐿 and 𝐔𝑅.

Eqn. (62) is solved with the conservative variables at the cell centers, 𝐔ctr being updated as

𝜕𝐔ctr

𝜕𝑡
= −
∑
int

𝐅int

𝐴ctr

, (64)

where the sum is over all of the interfaces of the cell and 𝐴ctr is the area of the cell. For two-dimensional problems, a zeroth order 
reconstruction is used such that the value within each cell is assumed to be constant. Likewise, the outward-moving Steger-Warming 
fluxes through each interface are calculated as

𝐅int =
[
F+ (𝐔−) + F−

(
𝐔+)+ F𝑐 (𝐔,∇𝐔)

]
𝑖
𝕟𝑖, (65)

where F± are the outward and inward moving Steger-Warming fluxes, 𝐔± are the conservative quantities on the outside and inside 
of the interface, and 𝕟 is the interface-length weighted normal vector of the interface. The gradients in the 𝑥 and 𝑦 directions are 
calculated at interfaces using the schematic shown in Fig. 1. We define auxiliary points along the lines between the cell center points, 
and interpolate the values on those auxiliary points from the cell center values. Then, both the 𝑥- and 𝑦-gradients can be calculated 
on all interfaces to find the gradient of the properties in the interface normal direction.

In addition, the timestep size Δ𝑡 is taken to satisfy Δ𝑡 < 𝜏 and the Courant–Friedrichs–Lewy (CFL) condition. In the present 
10-moment model, non-oscillatory (stable) results are obtained for the CFL condition of

𝐶 =
|𝜆𝑖|maxΔ𝑡

Δ𝑥𝑖
≤ 0.3, (66)

where |𝜆𝑖|max is the fastest wavespeed in the 𝑖 direction, |𝜆𝑖|max = |𝑢𝑖| +√3𝑝𝑖𝑖∕𝜌.

3.2. Boundary conditions

For one dimensional test cases (Sections 4 and 5), the 10-moment solver is compared with DSMC and Navier-Stokes solutions 
considering a 1-D shock tube. In these test cases, the initial condition consists of a discontinuity at the center of the domain, i.e., 
𝑥 = 0, and assumes that the states across the discontinuity are infinitely long and uniform. For these test cases, a Neumann boundary 
condition is used, whereby two ghost cells are added to the left and right sides of the domain for the fluid solvers, whose states 
are set equal to the last cell within the domain on either side, to obtain an unperturbed uniform distribution near the boundaries. 
These ghost cells are used when calculating the MUSCL-reconstructed states and thus the fluxes at the boundaries. Simulations with 
Dirichlet boundary conditions at the initial conditions sometimes led to a longer time to reach steady state as waves were reflected off 
the boundary and perturbed the structure in the domain. For cases reaching steady-state, the cells near the boundary were confirmed 
to be unperturbed from the initial conditions.

For the two-dimensional test case (Section 6), we propose an oblique shock test case in a converging duct. For free-stream 
boundary conditions at the inlet of the duct, the flow quantities at the boundary values are set to the known supersonic free-stream 
condition. For outflow boundary conditions at the outlet of the duct, since we do not know a priori the flow variables after the shock 
11

system, we choose physical conditions so that the post-shock region remains supersonic and thus, a Neumann-type extrapolation 
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Fig. 1. Schematic describing the calculation of gradient quantities at structured grid interfaces (open circles). Values are linearly interpolated from the cell centers 
(closed circles) to the auxiliary points at the red triangles and blue squares for calculation of the interface 𝑥 and 𝑦 gradients. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

boundary condition can be used for the outflow. 5-moment systems with subsonic (𝑀 < 1) flow near the boundaries will necessarily 
have some information advecting from outside the domain, which is often handled by assigning a flow state outside the domain. 
Supersonic flows, however, advect all of their information out of the domain. This is generalized to other hyperbolic systems, where 
the equivalent supersonic condition for a boundary on the right is that the lowest wave speed is positive, i.e., moving out of the 
domain, and similarly for boundaries at other orientations. In the 5-moment system, for a flow that is moving to the right (+𝑥
direction), the supersonic condition requires that 𝑢 −

√
𝛾𝑝∕𝜌 > 0, which clearly leads to 𝑢 >

√
𝛾𝑝∕𝜌. However, in the 10-moment 

system, the leftward-most moving wavespeed is 𝑢 −
√
3𝑝𝑥𝑥∕𝜌, which imposes a typically more strict condition: 𝑢 >

√
3𝑝𝑥𝑥∕𝜌. Under 

the assumption that 𝑝𝑥𝑥 ≈ 𝑝 and 𝛾 = 5∕3 (assuming a monatomic gas), the condition that no external information propagates back 
into the domain in the 10-moment system corresponds to

𝑀 >

√
3𝑝∕𝜌√
𝛾𝑝∕𝜌

= 3√
5
≈ 1.34. (67)

In a duct, there are also walls off of which the fluid must be properly reflected. Previous work [8,13,22] has considered the existence 
of Knudsen boundary layers which can capture arbitrary slip velocities and temperatures at the wall by incorporation of accommo-

dation coefficients. However, for the purposes of benchmarking the 10-moment model with other fluid models, we assume purely 
specular reflection at wall boundaries. This slip boundary condition allows for comparison to the results of the Euler equations, for 
which the exact solution is known. To perform the reflection of the particle velocities off the wall, we approximate the local VDF of 
the impinging particles from the 10-moment equation system as a Gaussian distribution as shown in Eqn. (21). Observing the form 
of the equation in two velocity dimensions, we consider the following VDF from the local fluid properties:

𝑓 2𝐷 ≃ 𝜌
𝑚

⎡⎢⎢⎢⎣
𝜌2

(2𝜋)2
(
𝑝𝑥𝑥𝑝𝑦𝑦 − 𝑝2𝑥𝑦

)⎤⎥⎥⎥⎦
1∕2

exp

[
− 𝜌

𝑝𝑥𝑥𝑝𝑦𝑦 − 𝑝2𝑥𝑦

(
𝑝𝑦𝑦𝑤

2
𝑥 − 2𝑝𝑥𝑦𝑤𝑥𝑤𝑦 + 𝑝𝑥𝑥𝑤2

𝑦

)]
. (68)

The argument takes the form of a generalized ellipse in {𝑤𝑥, 𝑤𝑦}. Thus, contours of constant 𝑓 are ellipses in velocity space. A 
specular reflection of this ellipse about the wall corresponds to the reflection of the distribution function after collision with the wall. 
Namely, if we know the rotation angle of the major axis of this ellipse from the 𝑣𝑥 axis, 𝜃, then the post-reflection angle will be 
𝜃𝑝𝑜𝑠𝑡 = 𝜙 + (𝜙 − 𝜃𝑝𝑟𝑒), where 𝜙 is the angle of the wall with respect to the 𝑥 axis, which corresponds to the relative angle between the 
wall-oriented velocities (𝑣||, 𝑣⟂) and the coordinate-axes (𝑣𝑥, 𝑣𝑦). A schematic of the construction of the post-collisional distribution 
is shown in Fig. 2. Full equations for 𝜃 and post-collision properties are presented in Appendix B. For instance, consider a flow with 
𝑇𝑥𝑥 > 𝑇𝑦𝑦 > 𝑇𝑥𝑦 = 0, i.e., the distribution is hottest in the 𝑥-velocity direction, and 𝜃 = 0. If the flow specularly reflects upon a 45◦
wall (i.e., 𝜙 = 45◦), the high 𝑥-velocity particles become high 𝑦-velocity particles after being reflected, and thus the post-collisional 
distribution becomes hottest in the 𝑦-velocity direction and 𝜃′ = 90◦. In our simulations, we assume 𝑣𝑧 = 0 and a two-dimensional 
flow; it is however to be noted that the boundary condition can be generalized to a three-dimensional flow.

Cells that are adjacent to the boundary use the VDF shown in Eqn. (68) to calculate the flux leaving the cell to the wall, and the 
specularly reflected VDF using post-collision quantities, as illustrated in Fig. 2, to calculate the reflected flux back into the cell due 
12

to collisions with the wall. This boundary condition conserves mass, momentum parallel to the wall, and energy.
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Fig. 2. Illustration of specular reflection boundary condition in 2-D with wall angle 𝜙 and distribution angle 𝜃.

Table 1

Normal shock initial conditions.

Π Π𝐿 Π𝑅
𝜌 1 4𝑀2

𝐿
∕
(
𝑀2
𝐿
+ 3
)

𝑢𝑥 𝑀𝐿
√
5∕3

(
𝑀2
𝐿
+ 3
)
∕
(
4𝑀𝐿
)√

5∕3
𝑢𝑦, 𝑢𝑧 0 0

𝑝𝑖𝑗 𝛿𝑖𝑗 𝛿𝑖𝑗
(
5𝑀2

𝐿
− 1
)
∕4

In the 2-D DSMC simulations, the specular condition is similarly employed at all walls to benchmark the DSMC and 10-moment 
solutions. To ensure a uniform free-stream, particles between a few 𝜆MFP of the inlet are thermalized through artificial collisions 
according to the free-stream distribution functions [51]. At the outlet, although the flow is supersonic, it was observed from the 
DSMC results that the presence of negative velocity particles at the tail of the VDFs could affect the results if, like in the fluid 
simulation, we do not account for any influx of information from outside the domain. For this reason, in the 2-D DSMC runs, the 
domain size is extended a few 𝜆MFP beyond the outflow boundary of the duct.

4. Case I: one-dimensional steady normal shock

To demonstrate its efficacy, the 10-moment system is compared to the 5-moment Navier-Stokes model and DSMC results under 
standard compressible fluid dynamics problems.

4.1. Numerical setup

First, we present a standing normal shock with incident Mach number 𝑀𝐿; and initial discontinuity at 𝑥 = 0 with 𝚷 = {𝑥 < 0 ∶
𝚷𝐿, 𝑥 > 0 ∶ 𝚷𝑅}, with left and right states as shown in Table 1. The properties on the right-hand side of the domain have been 
calculated using the Rankine-Hugoniot equations for post-shock conditions with specific heat ratio 𝛾 = 5∕3 to ensure a standing 
normal shock. The domain is simulated from 𝑥 = [−50𝜆0, +50𝜆0], where 𝜆0 is the pre-shock mean free path, 𝜆0 = 𝜏𝐿

√
𝜋𝑝𝐿∕2𝜌𝐿. The 

number of cells is 𝑁𝑥 = 2000 for the fluid models and 𝑁𝑥 = 500 in DSMC. In addition, 𝑇𝑟 = 0.005 ≃ 𝑝𝐿∕ 
(
𝑘𝐵𝜌𝐿∕𝑚

)
(cf. Eqn. (48)) 

and 2.5 × 104 macroparticles per cell are used in DSMC. In plotting, each flow quantity 𝜉 is normalized as

𝜉′ =
𝜉 − 𝜉0
𝜉1 − 𝜉0

, (69)

where 𝜉0 and 𝜉1 are the pre- and post-shock values, respectively, except for the bulk velocity 𝑢 in which 𝜉0 and 𝜉1 are chosen to be 
the post- and pre-shock bulk velocities, respectively, as the flow decelerates across the shock. The 𝑥 axis is normalized by 𝜆0, i.e., 
𝑥′ = 𝑥∕𝜆0.

If 𝑀𝐿 = 1, then 𝑀𝑅 = 1 and there is no shock. In this case, one expects a Maxwellian VDF everywhere in the domain. When 
𝑀𝐿 > 1, then 𝑀𝑅 < 1, causing a shock to appear. If 𝑀𝐿 = 1 + 𝜖, where 𝜖 ≪ 1, the VDF inside the shock can be approximated as a 
weak non-Maxwellian. As the 5-moment Navier-Stokes equations are derived assuming Kn≪ 1, it can be expected that 5-moment as 
13

well as 10-moment models can capture the shock accurately for 𝑀𝐿 = 1 + 𝜖. As 𝑀𝐿 increases, the shock width increases and more 
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Fig. 3. Normal Mach 2 shock profiles of (a) density, (b) 𝑥-velocity, (c) longitudinal pressure (𝑝𝑥𝑥), and (d) transverse pressure (𝑝𝑦𝑦) for the Euler equations, 10-moment 
without heat flux (10M no Q), 10-moment with heat flux (10M), Navier Stokes (NS), and DSMC.

inter-molecular collisions are required to equilibrate the pre-shock VDFs to the post-shock state. Thus, the VDFs inside the shock 
becomes more non-Maxwellian. The key hypothesis of this study is that the 10-moment system captures the non-Maxwellian nature 
within the shock better than the 5-moment Navier-Stokes system and approaches the DSMC (kinetic) results as the Knudsen number 
increases. However, as 𝑀𝐿 further increases, e.g., 𝑀𝐿 > 3, the VDFs become increasingly non-Maxwellian, beyond which a higher-

order moment model is required. The present test case can serve as a benchmarking problem for future investigations of higher-order 
moment models (e.g., 14-moment). Here, we discuss the results of the standing shock for 𝑀𝐿 = 2 to illustrate the difference between 
Navier-Stokes, 10-moment, and DSMC results. Then, we compare the Maxwellian closure with the Gaussian closure. Finally, the 
differences between Navier-Stokes, 10-moment, and DSMC will be shown for a range of 𝑀𝐿 from 1.2 to 4.

4.2. Mach 2 results

4.2.1. Comparison between Navier-Stokes, 10-moment, and DSMC

Fig. 3 shows the (a) normalized density, (b) velocity, and (c, d) on-diagonal pressure tensor components, i.e., 𝑝𝑥𝑥 and 𝑝𝑦𝑦 = 𝑝𝑧𝑧, for 
the case where the incoming Mach number 𝑀𝐿 = 2. Results of Euler, Navier-Stokes, 10-moment, and DSMC simulations are shown. 
The Euler solution exhibits a perfect discontinuity as predicted by the Rankine-Hugoniot relations. In other words, the Euler system 
describes the limit of fully collisional flow (i.e., 𝜏 → 0) in which there is no finite equilibration region. It is to be noted that two 
results from the 10-moment system are shown: without and with the heat flux closure as shown in Eqn. (33). Without the heat flux 
closure (10M no Q), there exists a so-called frozen discontinuity at about 𝑥′ = −2, which is consistent with previous literature [58,59]. 
The discontinuity is analogous to the shocks that occur in the 5-moment Euler system whenever the flow is supersonic, except it now 
occurs because the upwind Mach number is above the fastest upwind wave speed, i.e., 𝑀 > 1.34 (cf. Eqn. (67)), hence the inviscid 
portion of the 10-moment system treats this point as a shock. For 𝑀 < 1.34, no frozen discontinuity is seen. Because the heat flux 
closure, which is parabolic in nature, essentially has an infinite wavespeed, the discontinuity is removed significantly since the heat 
flux can still transport downstream information upwind.

While being able to capture the finite thickness of the shock, the Navier-Stokes results underpredict the shock width compared to 
the DSMC results. Here, the results shown are for 𝑀𝐿 = 2. The finite thickness of the shock is due to the transition from the pre-shock 
state to the post-shock state causing a non-Maxwellian VDF within the shock. It is interesting to see that the results obtained from the 
10-moment with heat flux closure (10M) are in better agreement with the DSMC solution than the 5-moment Navier-Stokes solution. 
14

However, it can be seen in Fig. 3 that the width of the shock obtained from the 10-moment solver is slightly underpredicted compared 
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Fig. 4. Function space representation of the approximate distribution functions used to form the system of equations. The true distribution function 𝑓 can be expanded 
directly about the equilibrium Maxwellian VDF, 𝑓𝑀 , or about the local Gaussian VDF, 𝑓𝐺 . Furthermore, the collisional relaxation can be to 𝑓𝑀 or 𝑓𝐸𝑆 for the BGK 
or ES-BGK operators, respectively.

to the DSMC solution. The discrepancy is most likely due to the heat flux not being a perfect reconstruction, and particularly, an 
underprediction of the kinetic third moment, due to the non-Maxwellian distribution function inside the shock, leading to a thinner 
shock width. The heat flux will be discussed in more detail in the following section.

At steady state, the conserved quantity 𝜌𝑢 is constant through the shock. It can be seen from Figs. 3(a) and (b) that the density 
and velocity profiles obtained from the 10-moment with heat flux are in better agreement with the DSMC results compared to the 
5-moment (NS) results. Interestingly, it is shown that the longitudinal pressure 𝑝𝑥𝑥 (Fig. 3(c)) is not equal to the transverse pressures 
𝑝𝑦𝑦 = 𝑝𝑧𝑧 (Fig. 3(d)) inside the shock. As the high-velocity flow first decelerates through collisions with the higher density right state, 
the gas is heated up in the 𝑥 direction and then the energy is transferred to the transverse directions by collisions after a finite 
distance. Hence, it can be seen that 𝑝𝑥𝑥 > 𝑝𝑦𝑦 inside the shock from the DSMC and 10-moment results. In both DSMC and 10-moment 
results, the transverse pressure lags the longitudinal pressure by about 2𝜆0. While the results obtained from the 10-moment without 
heat flux (10M no Q) show a larger numerical shock for 𝑝𝑥𝑥 than 𝑝𝑦𝑦, the heat flux closure assuming a Maxwellian distribution for 
the equilibrium VDF (10M) removes the numerical discontinuity. While the Navier-Stokes solution underpredicts the shock width 
compared to the DSMC results, it is interesting to note that the Navier-Stokes solution also captures a degree of pressure anisotropy 
as 𝑝𝑥𝑥 = 𝑝 − 𝑡𝑥𝑥 = 𝑝 −

4
3𝜇
𝜕𝑢𝑥
𝜕𝑥

and 𝑝𝑦𝑦 = 𝑝 − 𝑡𝑦𝑦 = 𝑝 +
2
3𝜇
𝜕𝑢𝑥
𝜕𝑥

for the 1-D simulations, i.e., 𝑝𝑥𝑥 > 𝑝𝑦𝑦 due to 𝜕𝑢𝑥
𝜕𝑥
< 0 as shown in Fig. 3(b).

4.2.2. Evaluation of heat flux (third-order moment) closure using DSMC (kinetic) results

As can be seen by comparing the results in Fig. 3 for the 10-moment results with and without heat flux, the form of the closure is 
instrumental to the accuracy of the 10-moment model. For the moment closure (e.g., Chapman-Enskog expansion), an approximation 
needs to be made for the arbitrary, non-Maxwellian VDF, 𝑓 , for the right hand side of kinetic transport equation, i.e., the collisional 
term. In the 5-moment system (e.g., Navier-Stokes equations), it is natural to take the equilibrium function to be a Maxwellian VDF 
due to the following two reasons. First, the 𝐻 -theorem states that the VDF becomes a Maxwellian distribution in the presence of fully 
collisional flow. In other words, the Maxwellian VDF corresponds to the maximum entropy condition in the presence of binary elastic 
collisions. Second, the 5-moment system solves for 𝜌, 𝑢𝑖, and 𝑝 (isotropic pressure) with the inherent assumption that 𝑝𝑥𝑥 = 𝑝𝑦𝑦 = 𝑝𝑧𝑧
= 𝑝 and 𝑝𝑖𝑗 (𝑖 ≠ 𝑗) ≪ 𝑝. In addition to the description of 𝑓 , when considering a BGK type operator, one can also choose the VDF to 
which 𝑓 relaxes to through the collisions. While the natural choice is to consider that any 𝑓 will relax to a Maxwellian VDF 𝑓𝑀 due 
to the 𝐻 -theorem, the key assumption of the ES-BGK operator is that a non-Maxwellian VDF, 𝑓 , does not locally relax to 𝑓𝑀 . For 
the reasons described above, in this manuscript, we employ the ES-BGK operator, which provides Pr = 2∕3 when choosing 𝜂 = −1∕2
in Eqn. (22), so that a better benchmarking can be performed between the fluid and kinetic results.

In contrast, previous investigations for 10-moment and 14-moment systems [47,60,61] proposed and employed a Gaussian heat 
flux closure. Reference [47] also developed an ‘entropy-respecting’ closure by beginning from the requirement that the closure 
increase entropy, and making simplifying assumptions to obtain a closed form with one free parameter. However, since no results 
using the closure were presented, we do not make comparisons to the model in this paper.

The Gaussian heat flux closure is based on the assumption that the equilibrium distribution about which the perturbative expan-

sion should be made is an anisotropic Gaussian distribution:

𝑓 = 𝑓𝐺(1 + 𝜉𝜙1,𝑔 +…), (70)

where 𝑓𝐺 is a Gaussian distribution, equivalent to the ellipsoidal distribution when ℘ = 𝑝𝑖𝑗 as shown in Eqn. (21). In the framework 
of the 10-moment system, the Gaussian distribution is an extension of the Maxwellian distribution which considers all of the state 
variables in the 10-moment system, i.e., 𝜌, 𝑢𝑖, and 𝑝𝑖𝑗 . The Gaussian distribution is also a natural choice to be used in conjunction 
with the ES-BGK collision operator, as it assumes that the non-Maxwellian VDF, 𝑓 , is a perturbation from a Gaussian distribution as 
shown in Eqn. (70) and relaxes to a different Gaussian distribution [31].

Fig. 4 shows the relation between the Maxwellian and Gaussian distributions. Let us consider a non-Maxwellian VDF, 𝑓 , while 
a given set of first five moments {𝜌, 𝑢𝑖, and 𝑝 = 𝑝𝑖𝑖∕3} is considered. In this function space, it is to be noted that the anisotropic 
pressure tensor, 𝑝𝑖𝑗 , the heat flux, 𝑞𝑖𝑗𝑘, and the higher order moments (e.g., kurtosis) can be any physically permissible values. If 
one calculates the anisotropic pressure tensor (𝑝𝑖𝑗 ) from 𝑓 , it can be considered that 𝑓 and 𝑓𝐺 lie in the same subspace (represented 
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as the vertical line in Fig. 4) in which the first ten moments, {𝜌, 𝑢𝑖, 𝑝𝑖𝑗}, are equal; meanwhile, the Maxwellian VDF 𝑓𝑀 has a 
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Fig. 5. Assessment of the heat flux ⟨𝑣𝑖𝑣𝑗𝑣𝑘⟩ directly obtained from the DSMC results (𝑀 = 2) in comparison to the heat flux closure models using Maxwellian and 
Gaussian distributions as the equilibrium VDF in the ES-BGK collision model, (a) 𝑞𝑥𝑥𝑥 and (b) 𝑞𝑥𝑦𝑦 .

different pressure tensor from 𝑓 , i.e., 𝑝𝑖𝑗 = 𝑝𝛿𝑖𝑗 . Through 𝑓𝐺 and 𝑓𝑀 can be defined the subspace of ellipsoidal distributions as 
shown in Eqns. (21) and (22), where the line is defined by the free parameter, 𝜂. It is known that the Maxwellian VDF corresponds 
to the maximum entropy condition from the 𝐻 -theorem that accounts for the Boltzmann collision integral. Thus, from a physical 
perspective, a non-Maxwellian VDF relaxes towards a Maxwellian VDF through elastic binary collisions. Furthermore, it is shown in 
Ref. [47] that the Gaussian VDF 𝑓𝐺 maximizes entropy given the (not-physically justified) constraint that the full pressure tensor 
𝑝𝑖𝑗 is conserved in addition to 𝜌 and 𝑢𝑖. This corresponds to a larger entropy than the one calculated from 𝑓 , but a smaller entropy 
compared to the Maxwellian VDF 𝑓𝑀 , which has the looser constraint that only 𝑝 must be conserved. Note that the ellipsoidal 
distribution 𝑓𝐸𝑆 in Eqn. (21) is used solely when considering the BGK operator (which is chosen for mathematical simplicity and is 
physically inaccurate compared to the Boltzmann collision operator) so that the Prandtl number can be tuned to be physical. While 
the ES-BGK model is not the same as the Boltzmann collision model, we consider this model to be sufficient for the purpose of 
demonstrating the 10-moment model and benchmarking with the DSMC results.

The Gaussian perturbative expansion with the ES-BGK operator results in the following equation for the Gaussian heat flux [46]:

𝑞𝐺
𝑖𝑗𝑘

= −𝜏
[
𝑝𝑘𝑙
𝜕

𝜕𝑥𝑙

(
𝑝𝑖𝑗

𝜌

)
+ 𝑝𝑗𝑙

𝜕

𝜕𝑥𝑙

(
𝑝𝑖𝑘

𝜌

)
+ 𝑝𝑖𝑙

𝜕

𝜕𝑥𝑙

(
𝑝𝑗𝑘

𝜌

)]
, (71)

which is contrasted with the Maxwellian formulation as shown in Eqn. (33).

The third moment term from the kinetic (DSMC) results is compared with the heat flux closure models for 10-moment systems. 
Fig. 5 shows the comparison of 𝑞𝑥𝑥𝑥 calculated using the following three approaches:

• Third moment (𝑞𝑖𝑗𝑘 =𝑚 ∫ 𝑤𝑖𝑤𝑗𝑤𝑘𝑓𝑑3𝐯) directly from the DSMC results;

• Heat flux assuming isotropic Maxwellian closure, as shown in Eqn. (33), using 𝜌, 𝑢𝑖, and 𝑝 obtained from the DSMC results;

• Heat flux assuming anisotropic Gaussian closure, as shown in Eqn. (71), using 𝜌, 𝑢𝑖, and 𝑝𝑖𝑗 obtained from the DSMC results.

Additionally, 𝜏 in Eqns. (33) and (71) are calculated using Eqn. (49). It can be seen in Fig. 5 that 𝑞𝑥𝑥𝑥 with Maxwellian closure is 
underpredicted but maintains the right profile compared to the 𝑞𝑥𝑥𝑥 directly from the DSMC simulation. The heat flux component 
𝑞𝑥𝑥𝑥 calculated using the Gaussian closure is closer to DSMC particularly in the pre-shock regime but the biggest drawback is the 
presence of the wrong sign (𝑞′𝑥𝑥𝑥 > 0), which can be seen downstream of the shock (e.g., 𝑥′ ≈ 3) as shown in Fig. 5(a). Similarly, 
Fig. 5(b) shows that 𝑞𝑥𝑦𝑦 assuming the Maxwellian closure is smaller than the DSMC results, while that assuming the Gaussian closure 
is closer to the DSMC results. However, the most notable difference is that the Maxwellian closure provides a good agreement with 
DSMC results in the pre-shock region, e.g., 𝑥′ < −5, as shown in Fig. 5(b).

The discrepancy of the heat flux closures can be explained by differences in the temperature gradient. The Gaussian closure for 
𝑞𝑥𝑥𝑥 can be written in 1-D as,

𝑞𝐺𝑥𝑥𝑥 = −3𝜏𝑝𝑥𝑥
𝜕

𝜕𝑥

(
𝑝𝑥𝑥

𝜌

)
, (72)

and the Maxwellian closure yields

𝑞𝑀𝑥𝑥𝑥 = −3𝜏𝑝 𝜕
𝜕𝑥

(
𝑝

𝜌

)
. (73)

A negative 𝑞𝑀𝑥𝑥𝑥 as shown in Fig. 5(a) illustrates that the isotropic temperature (𝑇 = 𝑝∕𝑛𝑘𝐵) is monotonically increasing across the 
shock. On the other hand, the sign of 𝑞𝐺𝑥𝑥𝑥 flips due to the fact that the longitudinal temperature (𝑇𝑥𝑥 = 𝑝𝑥𝑥∕𝑛𝑘𝐵) has a maximum 
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peak (overshoot) inside the shock. In the Maxwellian closure, the heat flux represents the perturbation from an isotropic Maxwellian 
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Fig. 6. Comparison of DSMC to 10-moment fluid results using Maxwellian and Gaussian for Chapman-Enskog expansion showing (a) 𝑝′
𝑥𝑥

and (b) 𝑝′
𝑦𝑦

in a Mach 2
normal shock.

distribution, and the heat flux can be interpreted as the transfer of total energy throughout space. In the Gaussian closure, the heat 
flux components decouple each velocity dimension so that, for instance, 𝑞𝑥𝑥𝑥 is a function of only derivatives of 𝑝𝑥𝑥 and not 𝑝𝑦𝑦 or 𝑝𝑧𝑧. 
During the spatial transport (i.e., from one cell to the next), the distribution is undergoing collisional relaxation, and the full pressure 
tensor is not conserved. Therefore, in the presence of anisotropy, it is not physical to use gradients in 𝑝𝑥𝑥 alone, since it cannot be 
said to be purely advected in the presence of collisions and thus a holistic description, coupling all three pressure components is more 
physically accurate for gasdynamic flows with binary elastic collisions. The present study shows that the recommended procedure to 
evaluate the high-order moment terms is to compare with those obtained from a kinetic model.

4.2.3. Effects of heat flux closure on 10-moment simulations

Fig. 6 shows a comparison of the anisotropic pressure profiles (𝑝𝑥𝑥 and 𝑝𝑦𝑦) obtained from 10-moment simulations of the Mach 
2 normal shock using the Maxwellian and Gaussian closures. Note that the DSMC results shown in Fig. 6 are identical to those in 
Figs. 3(c) and (d). Overall, the 10-moment system with a Maxwellian closure (red dashed lines) captures the shock structure, while 
there are visible discrepancies with DSMC results in the upstream of shock (i.e., 𝑥′ < 0).

The 10-moment model assuming a Gaussian closure (blue lines) shows a shock profile being broadened upstream and thinned 
downstream, particularly for 𝑝𝑥𝑥, as shown in Fig. 6(a). This reflects the fact that the heat flux assuming a Gaussian closure, 𝑞𝐺𝑥𝑥𝑥, is 
overestimated in the upstream and underestimated in the downstream. Near the center of the shock (i.e., 𝑥′ ≈ 1), where the Gaussian 
estimate of 𝑞𝑥𝑥𝑥 changes sharply and crosses zero, there is a steep change in the curvature of 𝑝𝑥𝑥. The fact that the Gaussian closure 
results in a reversal of the sign of 𝑞𝑥𝑥𝑥 in the downstream of the shock creates a much larger discrepancy with the DSMC solution 
than the Maxwellian closure; over the 10%-90% width of the DSMC shock, the 𝐿2 discrepancy in the profile of 𝑝𝑥𝑥 using the Gaussian 
closure is 2.4 times that of the profile using the Maxwellian closure. As shown in Fig. 6(b), the Maxwellian and Gaussian closures for 
𝑞𝑥𝑦𝑦 exhibit similar trend as 𝑞𝑥𝑥𝑥, i.e., 𝑞𝑥𝑦𝑦 is slightly more steepened with the Gaussian closure than with the Maxwellian closure. 
The discrepancy in 𝑝𝑥𝑥 has cascading effects up the chain of moments, leading each of the primitive variables to have the same strong 
change in curvature. For completeness, comparisons of the profiles of 𝜌 and 𝑢𝑥 are presented in Appendix C. While the differences 
in the estimates of 𝑞𝑖𝑗𝑘 may be subtle in this test case, an estimate of the heat flux is often a key model output in wall-bounded 
supersonic or reacting flows and has a strong effect on all of the flow variables. Thus, it is important to be able to capture the order 
of magnitude and especially the direction of heat flow.

4.3. Parametric study of various Mach numbers

Fig. 7 shows the results of the normal steady shock case for five different incoming Mach numbers, 𝑀𝐿 = 1.2, 1.4, 2.4, 3.0, and 4.0. 
As expected, the 5-moment Navier-Stokes, 10-moment, and DSMC results are in agreement at small 𝑀𝐿 cases, e.g., 𝑀𝐿 = 1.2 and 
1.4, as shown in Figs. 7(a) and (b), respectively. This is because the deviation of the non-Maxwellian VDF from a Maxwellian VDF 
is not significant within the shock for 𝑀𝐿 close to 1. Thus, a linear perturbation of the Maxwellian VDF, i.e., the Navier-Stokes 
model, sufficiently captures the non-Maxwellian nature. It is to be noted that the Navier-Stokes model is in slightly better agreement 
with DSMC than the 10-moment results in Fig. 7(a). This is due to the fact that the Navier-Stokes model is using the higher-fidelity 
Boltzmann closure, which is more accurate in the near-equilibrium regime where the small-Kn assumption is valid. It is expected that 
a 10-moment model with closure using the Boltzmann collision integral would converge to the Navier-Stokes and DSMC results; this 
is reserved for future investigation. As the Mach number increases, the decrease in the shock width can be seen using all three models. 
Because the shock width (𝐿𝑠) is the key characteristic length in the problem, the associated Knudsen number (Kn𝑠 = 𝜆∕𝐿𝑠) increases 
with Mach number. Accordingly, it can be seen that the Navier-Stokes model, which assumes Kn≪ 1, is in poorer agreement with 
DSMC results than the 10-moment model, especially as the incoming Mach number and Kn𝑠 increase, as shown in Figs. 7(c)–(e). 
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At 𝑀𝐿 = 1.4, the Navier-Stokes results begin to deviate from the DSMC results, while the 10-moment is in good agreement with 
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Fig. 7. Density profiles for incoming Mach number 𝑀𝐿 = (a) 1.2, (b) 1.4, (c) 2.4, (d) 3.0, and (e) 4.0 using fluid (Euler, Navier-Stokes, and 10-moment with 
Maxwellian heat flux closure) and DSMC simulations. The density jump across the shock (𝜌𝑅∕𝜌𝐿) is also shown for each case.

the DSMC results, as shown in Fig. 7(b). This demonstrates how the 10-moment model, as formulated, is better able to capture the 
non-Maxwellian effects than the Navier-Stokes equations with approximate closure for anisotropic pressure elements. As seen in the 
previous section, by 𝑀𝐿 = 2 (see Fig. 3), the 10-moment results begin to deviate from the DSMC results. Fig. 7(c) corresponds to 
𝑀𝐿 = 2.4, which shows a smooth transition from 𝑀𝐿 = 2, as shown in Fig. 3. At 𝑀𝐿 = 3, a larger difference between the 10-moment 
and DSMC results can be seen throughout the shock (see Fig. 7(d)). In addition, around 𝑥′ ≈ −2.5, a numerical discontinuity can 
be seen from the 10-moment results. Recall from Fig. 3 that there exists a frozen discontinuity when using the 10-moment model 
without the heat flux due to flow travelling faster than 𝑀 = 1.34, as described in Section 4.2. Upstream of that point, 𝐅− = 0 in 
Eqn. (63), so downstream flow 

(
𝐔𝑅
)

can only influence the fast-moving flow through the heat flux closure. It can be considered 
that the 10-moment closure underestimates the heat flux (i.e., the third moment) in an increasingly nonequilibrium flow and cannot 
sufficiently transfer information upstream. As the Mach number further increases, e.g., to 𝑀𝐿 = 4 as shown in Fig. 7(e), the deviation 
between the fluid (10-moment and 5-moment Navier-Stokes) and kinetic (DSMC) results increases. However, the 10-moment results 
with the Maxwellian heat flux closure continue to perform better than the Navier-Stokes results in comparison to the DSMC results. 
It is to be noted that the 10-moment simulation can be run at higher Mach numbers, but the numerical discontinuity becomes 
more evident. This suggests that at higher Mach numbers the flow becomes increasingly non-Maxwellian and one may need to take 
higher-order moments (e.g., 14-moments), use a higher-order perturbation to the distribution function (cf. Eqn. (26)), or develop a 
specialized closure to capture the non-Maxwellian VDFs in high-Mach number shocks.

5. Case II: one-dimensional unsteady shock tubes

5.1. Sod shock tube

The normal shock results presented in Section 4 achieved steady-state, for which the normalized results are independent of the 
choice of relaxation time 𝜏0 since the shock width is proportional to 𝜆0 and thus 𝜏0. The Sod Shock tube, whose solution in the Euler 
system consists of a self-similar unsteady solution, is a well-accepted test case for the development of Euler solvers [62]. Because the 
problem is time-dependent, the choice of the relaxation time 𝜏0 will affect the results at a particular time, i.e., the smaller 𝜏0, the 
more collisional the flow is, and the larger 𝜏0, the less collisional the flow is, making the flow more rarefied. For the Sod Shock tube 
problem, the initial conditions to the left and right of the discontinuity are shown in Table 2.

The domain is simulated from 𝑥 = [−1, 1]; the number of cells is 𝑁𝑥 = 2000 for the fluid models and 𝑁𝑥 = 500 in DSMC. Again, 
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𝑇𝑟 = 0.005 and 2.5 × 104 macroparticles per cell are used in DSMC. The Navier-Stokes results at varying Mach number have been 
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Fig. 8. Normalized Sod shock tube: density profiles for time 𝑡 = 0.2 for 𝜏0 = (a) 2 × 10−5 , (b) 2 × 10−3 , (c) 5 × 10−3 , and (d) 2 × 10−2 .

Table 2

Sod shock tube initial conditions.

Π Π𝐿 Π𝑅
𝜌 1 0.125
𝑢𝑥, 𝑢𝑦, 𝑢𝑧 0 0
𝑝𝑖𝑗 𝛿𝑖𝑗 0.1 𝛿𝑖𝑗

previously benchmarked against high-fidelity Boltzmann equation solvers [63,64]. Instead we focus on a comparison between the 
10-moment and DSMC results.

Fig. 8 shows the results of multiple simulations to 𝑡 = 0.2 with varying 𝜏0. As 𝜏0 → 0, the fluid equilibrates quickly and one 
approaches the Eulerian limit (i.e., 𝑡∕𝜏0 → ∞), exhibiting sharp discontinuities between the regions, as shown in Fig. 8(a). We 
note that around the boundaries of each region in the flow, particularly the contact discontinuity (CD), the DSMC solution shows 
some finite widening not captured by the fluid models caused by kinetic diffusion of particles between the two regions. As found 
in Ref. [65], the normalized width of a contact discontinuity Δ′ = (CD width)∕𝜆 ∝ 𝑡∕𝜏 as more high-velocity particles cross the 
discontinuity and equilibrate. However, because 𝜆 ∝ 𝜏 , the width of the contact discontinuity after the same amount of time, e.g., 
𝑡 = 0.2, is roughly unchanged over a wide range of collisionality. Additionally, the DSMC results show a similar kinetic mixing near 
the edges of the rarefaction wave and shock. These kinetic effects are not captured by the 10-moment model for collisional flows (as 
𝜏0 decreases).

As 𝜏0 increases, the 10-moment fluid model does not fully reach local equilibrium by the given time, 𝑡 = 0.2. In other words, 𝑡∕𝜏0
decreases, and equivalently, the Knudsen number increases (Kn≈ 𝜏0∕𝑡), indicating that the average number of collisions that particles 
undergo during the flow advection decreases. Instead of forming sharp discontinuities, Fig. 8(b) exhibits some widening of the shock 
and contact discontinuities due to mixing of the distributions on either side of each discontinuity. However, the 10-moment results 
are in good agreement with the DSMC results for all wave features, i.e., rarefaction, contact discontinuity, and shock. In Fig. 8(c), 
there is no distinguishable uniform region between the locations of the inviscid discontinuities and thus cannot be considered to 
be separate discontinuities in this regime. As demonstrated in Fig. 8(d), in the collisionless limit (i.e., 𝑡∕𝜏0 = 10), the discontinuous 
19

wave features are not present at all, and the system is dominated by collisionless mixing. If we define the characteristic length scale 
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Fig. 9. Normalized 10-moment Sod Shock density profiles for 𝜏0 = 2 × 10−5 (red solid) compared to Euler solution (black dashed) at times (a) 𝑡 = 3 × 10−3 , (b) 
𝑡 = 6 × 10−3 , (c) 𝑡 = 12 × 10−3 , and (d) 𝑡 = 40 × 10−3 .

by 𝐿 = 𝑡
√
8𝑝∕𝜋𝜌, which corresponds to the distance the average particle will travel in a given time, then the Knudsen number in 

this flow is approximately Kn = 𝜋𝜏∕4𝑡 ≈ 0.08, well in the regime of the transition from continuum to free-molecular flow. We note 
that the 10-moment model has qualitatively good agreement with DSMC to this relatively high value for the Knudsen number, i.e., 
(10−1). Fig. 9 shows the evolution of the density distribution for 𝜏0 = 2 × 10−5, which is identical to Fig. 8(a). Here, the results are 
shown at different times, 𝑡 = 0.003, 0.006, 0.012, and 0.04. For smaller values of 𝑡∕𝜏0, one expects a rarefied solution (large Kn). As 
𝑡∕𝜏0 increases, the flow becomes more collisional as it advects (small Kn). Recall that in the Eulerian solution, the discontinuities are 
formed in the first instant and the solution is self-similar in time, i.e., any flow quantity 𝑄(𝑥, 𝑡) =𝑄(𝑥∕𝑡). Thus, if we rescale 𝑥 axis 
of the Euler solution with

�̃�(𝑡)
𝑡

= 𝑥
𝑡0
, (74)

then the scaled solution of the Euler equation, 𝑄(�̃�, 𝑡), is independent of time. Fig. 9 scaled with 𝑡0 = 0.2 shows the dynamic 
relaxation of 10-moment solutions from the initial discontinuity. After a short time, Fig. 9(a), i.e., 𝑡∕𝜏0 = 150, the fluid does not 
have enough time to equilibrate, resulting in a smooth transition between the pre- and post-shock states. This resembles a more 
rarefied solution (cf. Fig. 8(d)). However, the comparison between Figs. 8(d) and 9(a) is not exact because the 10-moment results 
are not self-similar under any linear scaling, due to the fact that the distribution function relaxes to equilibrium exponentially in 
time, while the advective transport occurs linearly. Thus, the comparison between Figs. 8 and 9 can only be qualitative. As time 
progresses, as shown in Figs. 9(b) and (c), i.e., 𝑡∕𝜏0 = 300 and 600, respectively, the uniform regions begin to form as the flow comes 
to equilibrium and discontinuities gradually develop as collisions play a greater role on longer time scales. Eventually, after a long 
time, the solution approaches the Euler solution, as shown in Fig. 9(d) (𝑡∕𝜏0 = 2000). This demonstrates the ability of the 10-moment 
model with Maxwellian heat flux closure to capture elements of the transition from kinetic to continuum-dominated flows.

5.2. Shear flow

Up to this point, we have only made use of the anisotropy of on-diagonal pressure components (normal stress). To further 
showcase the capabilities of the 10-moment model, we consider a pure shear test case, where the discontinuity is only in the 
20

transverse 𝑦 velocity. The states across the initial discontinuity are shown in Table 3. The discontinuity only in 𝑢𝑦 ensures that there 
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Fig. 10. Results of the pure shear test case at time 𝑡 = 0.2 for 𝜏0 = (a) 2 × 10−5 , (b) 2 × 10−3 , (c) 5 × 10−3 , and (d) 2 × 10−2 . Solid: 10-moment, dashed: DSMC.

Table 3

Pure shear initial conditions.

Π Π𝐿 Π𝑅
𝜌 1 1
𝑢𝑥, 𝑢𝑧 0 0
𝑢𝑦 2 −2
𝑝𝑖𝑗 𝛿𝑖𝑗 𝛿𝑖𝑗

is no difference in density or temperature difference across the discontinuity, and no advected flow to induce mixing. In the Euler 
system, such initial shear condition does not result in a formation of waves and there would be no evolution of the flow because 𝑢𝑥
and 𝑝 are identical. If viscosity is taken into account, i.e., the Navier-Stokes system, the deviatoric stresses 𝑡𝑥𝑦 = 𝜇

𝜕𝑢𝑦

𝜕𝑥
in Eqn. (56)

would lead to a diffusion of 𝑢𝑦, while the 10-moment model captures the shear directly. The simulated domain is from 𝑥 = [−1, 1]
with 𝑁𝑥 = 2000 for fluid and 𝑁𝑥 = 500 for DSMC and with 𝑇𝑟 = 0.005 and 2.5 × 104 macroparticles per cell.

Fig. 10 shows the results of the shear flow simulations for various values of 𝜏0 at the same 𝑡, i.e., 𝑡 = 0.2. All cases exhibit a positive 
𝑝𝑥𝑦 near the centerline, the magnitude of which grows with 𝜏0. The positivity of 𝑝𝑥𝑦 can be explained from a fluid perspective by 
observing Eqn. (10) and noting that from the initial conditions, 𝜕𝑝𝑥𝑦

𝜕𝑡
= −𝑝𝑥𝑥

𝜕𝑢𝑦

𝜕𝑥
; because 𝑝𝑥𝑥 > 0 and 𝜕𝑢𝑦

𝜕𝑥
< 0, 𝑝𝑥𝑦 grows. For a kinetic 

explanation of this result, let us consider the expected distribution function at that point. At the centerline, there is mixing between 
particles from the left region moving right and flow from the right region to the left. Those from the left region have positive 𝑦
velocities, as well as positive 𝑥 velocities (corresponding to a positive wave speed); while those from the right region have negative 
𝑥 and 𝑦 velocities. Thus, there is a correlation of high 𝑥 and high 𝑦 velocities and ⟨𝑣𝑥𝑣𝑦⟩ > 0. From a Navier-Stokes perspective, 
𝑝𝑥𝑦 ≃ −𝑡𝑥𝑦 = − 𝜕𝑢𝑦

𝜕𝑥
> 0. Fig. 10(a) shows the results at low 𝜏0 = 2 × 10−5 and, similarly to Fig. 8(a), shows discrepancies between 10-

moment and DSMC results. In this regime, the fluid model underpredicts the kinetic effects and reverts to a more wave-like structure. 
While Fig. 10(a) shows that 𝑝𝑥𝑥 = 𝑝𝑦𝑦 = 𝑝𝑧𝑧 and hence the flow is collisional due to small 𝜏0, the discrepancy between 𝑝𝑥𝑥, 𝑝𝑦𝑦, and 
𝑝𝑧𝑧 increases as 𝜏0 increases, i.e., as flow becomes more rarefied, as shown in Figs. 10(b–d). It can be expected that the Navier-Stokes 
21

equations, which consider 𝑝𝑖𝑗 ≃ 𝑝𝛿𝑖𝑗 , cannot accurately capture such large pressure anisotropy. Figs. 10(b–c) show good agreement 
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Table 4

2-D oblique shock initial 
and inflow conditions.

Π0 at 𝑥 = 0

𝜌 1.6103 kg/m3

𝑢𝑥 836.5 m/s

𝑢𝑦, 𝑢𝑧 0

𝑝𝑖𝑗 𝛿𝑖𝑗 105 Pa

𝑇𝑖𝑗 𝛿𝑖𝑗 300 K

𝑀 2.6

between the 10-moment and DSMC results, indicating that the 10-moment model is able to capture the dynamics of shear-driven 
flows and the resultant effects on the full pressure tensor. Fig. 10(d) shows results a high value of 𝜏0 = 2 × 10−2, where there is still 
good agreement, but the 10-moment model begins to underpredict the kinetic effects that dominate at low collisionality.

The on-diagonal components of 𝑝𝑖𝑗 (i.e., 𝑝𝑖𝑗|𝑖=𝑗 ) exhibit two distinct features. First, the on-diagonal pressures increase at the 
centerline as the flow becomes more rarefied. Second, the pressure front moves outward from the centerline, with the wavefront 
being more diffusive (and hence slightly faster) when the flow is rarefied than when the flow is collisional. To explain the structure 
of the on-diagonal pressure elements, let us consider the flow dynamics from a kinetic perspective. At the centerline, the presence 
of counterstreaming particles from either side of the interface corresponds to a large 𝑝𝑦𝑦 as the VDF in 𝑦 velocity results in a wide 
spread due to the counterstreaming velocities (cf. shear). The increase in 𝑝𝑦𝑦 is then transferred to the other pressure components 
𝑝𝑥𝑥 and 𝑝𝑧𝑧 through collisions, causing the observed increase in all three pressure components, which can be particularly seen in 
Figs. 10(b–d) in which 𝜏0 is large, i.e., flow becomes less collisional. However, the increased pressure at the centerline also induces an 
outward moving acoustic wave in the 𝑥 direction. Additionally, the heat flux 𝑞𝑥𝑥𝑥 is larger than 𝑞𝑥𝑦𝑦 and 𝑞𝑥𝑧𝑧, as shown in Eqn. (33), 
resulting in a faster diffusion of 𝑝𝑥𝑥 compared to 𝑝𝑦𝑦 and 𝑝𝑧𝑧. For these reasons, at the centerline, we see that 𝑝𝑦𝑦 is the highest 
and 𝑝𝑥𝑥 is the lowest. Accordingly, 𝑝𝑧𝑧 is smaller than 𝑝𝑦𝑦, but is larger than 𝑝𝑥𝑥. Furthermore, as can best be seen in Fig. 10(d) at 
𝑥 ≈ ±0.3, in the outwardly moving pressure wave, like in the normal shock case, 𝑝𝑥𝑥 > 𝑝𝑦𝑦 ≈ 𝑝𝑧𝑧 as the flow in the 𝑥 direction is 
converted into internal energy.

6. Case III: two-dimensional steady flow: oblique and reflected shocks

The 10-moment and DSMC models are extended to a two-dimensional shock system. The two models are benchmarked under a 
test case that is a supersonic flow in a channel impinging on a ramp of turning angle 8 degrees. The first test case has an incoming 
mach number of 𝑀 = 2.6; this supersonic flow generates an oblique shock, which reflects off of the top wall and then exits the 
domain. The focus of this section is to verify the 10-moment model in the limit of low Knudsen number where the Navier-Stokes 
results are comparable to DSMC. The second test case increases the Mach number to demonstrate the capabilities of the 10-moment 
model in two-dimensions in more non-equilibrium regimes.

6.1. Numerical setup

The channel is 1.5 m wide in 𝑦 direction; begins at 𝑥 = 0 and the 8◦ ramp starts after 0.5 m and the channel is cut off at 𝑥 = 4 m. 
For the first test case, the initial Mach number is chosen to be 𝑀𝐿 = 2.6 to ensure that the flow at the outlet is always faster the 
fastest wave speed and there can be no information passed back into the domain (cf. Eqn. (67)). The initial and inflow (from the left) 
conditions, constant throughout the domain, are shown in Table 4.

In the fluid simulations, the number of cells in the 𝑥 and 𝑦 directions, [𝑁𝑥, 𝑁𝑦] = [400, 150], while for DSMC, [𝑁𝑥, 𝑁𝑦] = [200, 75], 
with reference temperature 300 K and the number of macroparticles per cell approximately 500. For both fluid and kinetic models, 
the simulation timestep is 10−6 s, which is about 0.1𝜏0 for high-collisionality case and corresponds to a maximum CFL number of 
0.08, satisfying the CFL condition shown in Eqn. (66). Moreover, in the DSMC simulations, to reduce the statistical noise due to finite 
macroparticles, we take time-averaged results over 5.0 s after steady state, which corresponds to 104𝜏0 in the low collisionality case. 
To speed up the kinetic simulations, message passing interface (MPI) and domain decomposition in the 𝑥 direction is used. The wall 
time for the DSMC simulations is about 48 hours each using 20 processors, while each 10-moment simulation took about 4 hours on 
a serial processor.

6.2. Comparison between Navier-Stokes, 10-moment, and DSMC results

Fig. 11 shows the results of simulations varying the relaxation time using Navier-Stokes, 10-moment, and DSMC models. The free 
stream Mach number normal to the (first) oblique shock is about 𝑀0𝑛 = 1.3 (in the Euler system), indicating a fairly weak shock. 
Note that for high collisionality, as shown in Fig. 11(a), the two (the first oblique and the reflected) shocks are sharp discontinuities 
and match the solutions of the Euler equations. In this case, 𝐿 = (1 m)≫ 𝜆0 ≈ 3 × 10−3 m, and so the width of the shock is small 
compared to the domain size. At an intermediate collisionality, e.g., Fig. 11(b), 𝜆0 ≈ 3 × 10−2 m, so that the shock width ∼10𝜆0
is visibly broader and within an order of magnitude of the domain; however, the shock width is still smaller than the domain 
22

and so the two shocks are still distinguishable from one another, though broadened. Finally, at low collisionality, e.g., Fig. 11(c), 
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Fig. 11. Mass density profiles of the Mach 2.6 two dimensional ramp with 𝜏0 = (a) 1 × 10−5 s, (b) 1 × 10−4 s, and (c) 5 × 10−4 s. Showing a comparison between (1) 
Navier-Stokes, (2) 10-moment, and (3) DSMC simulations.

Fig. 12. Full (1) 10-moment and (2) DSMC results for the Mach 2.6 case with 𝜏0 = 1 × 10−5 s (high collisionality case), showing (a) 𝑢𝑥 , (b) 𝑢𝑦 , (c) 𝑝𝑥𝑥 , and (d) 𝑝𝑥𝑦 . 
See Fig. 11(a2) and (a3) for the profiles of 𝜌.

𝜆0 ≈ 1.5 × 10−1 m, so the shock width, is about the same as the domain size. It is clear that the low value of collisionality has the 
effect of smearing out the shocks so that there are no longer three distinct regions, but a gradual transition to a higher density 
flow. At the moderate normal Mach number 𝑀0𝑛 = 1.3, the distribution functions do not deviate heavily from Maxwellian, so both 
Navier-Stokes and 10-moment models capture the kinetic results well; as seen in the 1-D cases (i.e., Figs. 7(a–b)), the 10-moment 
23

results have slightly better agreement with DSMC than Navier-Stokes.
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Fig. 13. Full (1) 10-moment and (2) DSMC results for the Mach 2.6 case with 𝜏0 = 1 × 10−4 s (intermediate collisionality case), showing (a) 𝑢𝑥 , (b) 𝑢𝑦 , (c) 𝑝𝑥𝑥 , and 
(d) 𝑝𝑥𝑦 . See Fig. 11(b2) and (b3) for the profiles of 𝜌.

6.3. Fluid velocities and anisotropic pressure

Here, the other fluid properties, including 𝑥 bulk velocity, 𝑦 bulk velocity, 𝑝𝑥𝑥, and 𝑝𝑥𝑦 are illustrated for high (𝜏0 = 1 × 10−5 s), 
intermediate (𝜏0 = 1 × 10−4 s), and low (𝜏0 = 5 × 10−4 s) collisionality cases.

Fig. 12 shows the high collisionality case. The results are close to the Euler solution where infinitely thin discontinuities separate 
distinct, uniform regions. The results presented follow the expectation, showing three uniform regions separated by oblique and 
reflected shocks which are both thin compared to the size of the regions. Flow is decelerated in the 𝑥 direction, as shown in 
Fig. 12(a). The bulk velocity in 𝑦 direction is zero in the regions before the first oblique shock (pre-shock) and after the reflected 
shock, but it is positive in the ramp region, as shown in Fig. 12(b). The pressure 𝑝𝑥𝑥 also shows discontinuous increase across the 
shocks (see Fig. 12(c)). Finally, Fig. 12(d) shows that non-zero off-diagonal pressure 𝑝𝑥𝑦 is captured in the shock layer. The existence 
of 𝑝𝑥𝑦 indicates that the direction of principal stress is not aligned with the coordinate axes. In the shock-oriented frame, the oblique 
shock looks like a normal shock: 𝑝𝑛𝑛 > 𝑝𝑡𝑡 and 𝑝𝑛𝑡 ≈ 0, where 𝑛 and 𝑡 are the normal and tangential directions to the oblique shock. 
Although there is no shear in the shock-oriented frame, the obliqueness of the directions of principal stress leads to a finite 𝑝𝑥𝑦 when 
the pressure tensor expressed in the lab-frame coordinates (𝑥, 𝑦).

In the intermediate collisionality case, as shown in Fig. 13, we see roughly the same trend as with density showing a larger shock 
width, but we also begin to see some other features indicative of non-equilibrium effects. Right after the beginning of the ramp in 
Fig. 13(a), we note that there is a region of high 𝑥-velocity flow next to the wall that extends beyond the width of the shock. This 
can be explained by observing that at the corner of the ramp, all of the contours converge to a small width, and thus the shock is 
thinnest at this point. For this reason, it is likely some amount of high-speed low-collisionality flow can bend around the corner and 
penetrate further into the second region before being equilibrated. We note that the 10-moment solver is able to accurately capture 
this non-local effect seen in DSMC. The contours of 𝑦-velocity near the top wall, shown in Fig. 13(b), demonstrate the implementation 
of the no-penetration boundary condition (i.e., specular reflection), wherein the bulk 𝑦-velocity vanishes at the wall, and there is a 
finite region between the wall and the equilibrated flow as the shock reflects off of the upper wall. In addition, as shown in Fig. 13(c), 
the rise in pressure leads the rise in density (cf. Fig. 11) by a few 𝜆0, just as seen in Fig. 3. Furthermore, the magnitude and structure 
of 𝑝𝑥𝑦, shown in Fig. 13(d), is captured accurately by the 10-moment model. The region of highest 𝑝𝑥𝑦 arising from the corner is 
captured, with 𝑝𝑥𝑦 decreasing with distance from the corner as the shock loses some of its strength. Finally, after the reflection of the 
24

shock, the sign of 𝑝𝑥𝑦 changes as the direction of shear reverses.
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Fig. 14. Full (1) 10-moment and (2) DSMC results for the Mach 2.6 case with 𝜏0 = 5 ×10−4 s (low collisionality case), showing (a) 𝑢𝑥 , (b) 𝑢𝑦 , (c) 𝑝𝑥𝑥 , and (d) 𝑝𝑥𝑦 . See 
Fig. 11(c2) and (c3) for the profiles of 𝜌.

Fig. 15. Comparison of DSMC (dotted) and 10-moment (solid) density profiles for different degrees of collisionality, taking horizontal slices at (a) 𝑦 = 0.75 m and (b) 
𝑦 = 1.25 m.

Finally, in the low collisionality case, i.e., in Fig. 14, we observe a greater broadening of the discontinuities, which then begin 
to interact with one another and are subject to highly nonequilibrium effects. As seen in Fig. 14(a), the 10-moment model is able 
to capture the high slip velocities after the corner near the wall of the ramp. Unlike in Fig. 13(a), where region of high velocity 
was equilibrated, at low collisionality, the region persists throughout the domain. A similar effect is visible in Fig. 14(b), which 
also showcases a region of high velocity near the ramp wall, as well as the extension of the shock width to encompass most of the 
width of the channel. The pressure contours in Fig. 14(c) also show excellent agreement between the 10-moment model and DSMC 
and also demonstrate that the two shocks are now indistinguishable, as the pressure increases smoothly throughout the domain as 
the flow is less collisional, i.e., more rarefied. Also, the contours of 𝑝𝑥𝑦, as shown in Fig. 14(d) have increased in width and show 
good agreement in both magnitude and structure within the remnants of the shocks. Overall, there is good agreement on the width 
of the widened shock and the interaction of the two discontinuities with each other and the walls. However, there remain small 
discrepancies between the 10-moment and kinetic models, especially in the high Kn flow at the very start of the ramp, indicating 
25

that a higher-order model may be required to capture such effects.
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Fig. 16. Mass density profiles of the two dimensional ramp with incoming Mach number 𝑀𝐿 = 5.2 (𝑀𝑛 = 1.6) oblique shock. The reference time 𝜏0 = 1 × 10−4 s and 
we show a comparison between (a) Navier-Stokes, (b) 10-moment and (c) DSMC models.

Fig. 17. Comparison of 10-moment, Navier-Stokes and DSMC density profiles at a horizontal slice at 𝑦 = 0.5 m, for (a)𝑀𝐿 = 5.2, and (b)𝑀𝐿 = 8.

Fig. 15 shows horizontal cuts at 𝑦 = 0.75 m and 𝑦 = 1.25 m. Overall, the DSMC results and the 10-moment results are in good 
agreement. In Fig. 15(a), we note that at high collisionality (𝜏0 = 1 × 10−5 s), the reflected shock does not intersect the cut at 
𝑦 = 0.75 m, and so only the discontinuity due to the first oblique shock is observable. However, at the intermediate collisionality 
(𝜏0 = 1 × 10−4 s), not only does the first shock widen, but also the flow near the outflow boundary shows the effects of a widened 
reflected oblique shock. Finally, at low collisionality (𝜏0 = 5 ×10−4 s), the flow is rarefied so that the shock width becomes comparable 
to the size of the domain and the flow does not fully equilibrate. Likewise in Fig. 15(b), similar results are shown at 𝑦 = 1.25 m, with 
shocks interacting in the intermediate collisionality case and then further broadening as collisionality decreases.

6.4. Higher Mach numbers

In order to provide a sharper distinction between the 10-moment and Navier-Stokes models in two spatial dimensions when 
the flow is further from equilibrium, we consider the same test problem with hypersonic incoming Mach numbers, 𝑀𝐿 = 5.2 and 
𝑀𝐿 = 8.0, which correspond to normal Mach numbers of about 𝑀𝑛 = 1.6 and 𝑀𝑛 = 2.0, respectively. All values except for 𝑢𝑥, 𝑀𝐿
are as noted in Table 4. The value of 𝜏0 is taken to be 3 × 10−4 s for all cases; because the shock will not reflect off the top wall in 
these cases, the system is scale-independent, and the width of the shock in DSMC is about 10𝜆0.

Fig. 16 shows a comparison of the mass density profiles between the Navier-Stokes, 10-moment and DSMC models for a Mach 
5.2 oblique shock impinging on an 8◦ ramp. We see a similar trend to that found in Fig. 7, where at this higher Mach number, the 
Navier-Stokes solution, Fig. 16(a), significantly underestimates the width of the shock. Although the 10-moment model is not in as 
excellent agreement with DSMC as it was in the 𝑀𝐿 = 2.6 test case, this clearly demonstrates the ability of the 10-moment model to 
out-perform the Navier-Stokes model in non-equilibrium regimes. As shown in the horizontal cuts of the density profile in Fig. 17, 
the trend is similar to in the one-dimensional case where, as the Mach number increases, the Navier-Stokes solution significantly 
underestimates the width of the shock while the 10-moment model is in imperfect, but superior agreement with DSMC.

One critical prediction of hypersonic flow simulations is the heat flux at the wall, since it informs design and material require-

ments. Although the focus of the present study is not the formation of boundary layers or the no-slip condition in the 10-moment 
model, we chose the wall-normal temperature gradient near the wall as a fluid property of interest to demonstrate the differences 
26

between the models in this 2-D test problem.
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Fig. 18. Comparison of 10-moment, Navier-Stokes and DSMC wall-normal temperature gradients on the cell centers adjacent to the ramp and along the ramp for (a) 
𝑀𝐿 = 5.2, and (b) 𝑀𝐿 = 8.

With the boundary condition described in Sections 3.2 and Appendix A and shown in Fig. 2, the gradient of isotropic temperature 
in the normal direction exactly at the wall interface should be zero at steady state. However, we can calculate a temperature gradient 
in the cells adjacent to the wall (i.e., the ramp) using the Green-Gauss method [66]

∇⃗𝑇ctr ≃
1
𝐴ctr

∑
int

𝑇int�̂�int, (75)

where the interface value of the temperature is found using simple face averaging from the temperatures on the cell centers to either 
side of the interface, 𝑇int =

(
𝑇left + 𝑇right

)
∕2. The wall-normal temperature gradient is then calculated as ∇⃗𝑇 ⋅ �̂�wall on the cell centers 

adjacent to the wall. The DSMC results are compared to fluid results with [𝑁𝑥, 𝑁𝑦] = [200, 75], using the same cell size between the 
kinetic and fluid simulations.

Fig. 18 shows a comparison of the cell-centered, wall-normal temperature gradient between the three models for incoming 
Mach numbers 𝑀𝐿 = 5.2 and 𝑀𝐿 = 8. We see that, due to underestimating the shock width, the Navier-Stokes model consistently 
overestimates the peak temperature gradient, and does not capture that the rise in temperature gradient occurs slightly further 
upstream, at 𝑥 ≃ 0.55 m. In both cases, the 10-moment model provides a better estimate of the temperature gradient, and thus the 
heat flux within the shock. After the first oblique shock, there is a finite equilibration period for 𝑥 > 0.7 m as the temperature relaxes 
to its equilibrium post-shock value. The contrast is not quite as stark in this region because the flow is nearer to equilibrium, but 
still the 10-moment model performs similarly to Navier-Stokes in approximating the DSMC profile in the post-shock wall region, 
particularly in the high Mach number condition, as shown in Fig. 18(b).

6.5. Grid convergence

In all of these presented results, the grid size is at least as fine as the mean free path in each region. To make sure that the grid 
resolution is high enough, a grid convergence study is conducted. The 10-moment results with 𝑀𝐿 = 2.6 and 𝜏0 = 1 × 10−6 s (fully 
collisional) are compared to the exact solution of the Euler equations. The normalized density is used as the metric for the grid 
convergence benchmark. The 𝐿2 error norm is calculated as follows:

𝐿2 =

√√√√ 1
𝑁

𝑁∑
cell=1

(
𝜌10𝑀 − 𝜌𝐸

)2
, (76)

where 𝑁 =𝑁𝑥𝑁𝑦 is the total number of cells and 𝜌10𝑀 and 𝜌𝐸 are the solutions of the 10-moment and Euler models, respectively. 
Simulations were performed with 𝑁𝑥 = 100, 200, 300, 400 and 600, with 𝑁𝑦 = 50, 75, 125, 150, and 225, respectively. As the grid is 
not uniform in size in the domain, for demonstrative purposes, the average grid size is used:

(Δ𝑥)2 = Total Domain Area ≈ 5.14 m2

𝑁
. (77)

Fig. 19 shows that the convergence is approximately first-order in Δ𝑥. This is to be expected because of the zeroth-order reconstruc-

tion for the interface values and interpolation of the cell values to cell interfaces for a non-orthogonal mesh. Nonetheless, the grid 
convergence demonstrates that the 10-moment solver is stable and provides a robust solution the gas dynamics problems in good 
agreement with kinetic DSMC results at a much lower computational cost.

7. Conclusions

In summary, the 10-moment model with Maxwellian heat flux closure provides a high-fidelity alternative to Navier-Stokes and 
higher-order moment simulations as its inviscid fluxes retain real eigenvalues for all initial conditions, and it is able to accurately 
capture finite kinetic effects. The model is shown to be in good agreement with DSMC simulations up to high Mach numbers, and 
27

up to Knudsen numbers on the order of 1. The 10-moment fluid model is formulated with a heat flux closure assuming relaxation 
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Fig. 19. The solid line shows the convergence rate in the 2-D case; the dashed line shows a first order convergence rate.

toward a Maxwellian distribution function. The 10-moment fluid model is compared with 5-moment (Navier-Stokes and Euler) and 
kinetic (DSMC) models for canonical problems. The resulting equation for heat flux provides values in each element of the rank 3 
heat flux tensor in terms of the spatial derivatives of only the scalar temperature, and provide a low-complexity alternative to simple 
relaxation closures [39]. We postulate that the Maxwellian heat flux closure is more physically accurate than the Gaussian closure (cf. 
𝐻 -theorem). From the simulations, the 10-moment model with the Maxwellian closure is in better agreement with DSMC simulations 
than the 10-moment model with the Gaussian closure, despite the latter’s incorporation of information from the full pressure tensor, 
demonstrating that the correct equilibrium distribution function should be the Maxwellian VDF for gas dynamics problems.

The 10-moment model inviscid fluxes are hyperbolic under all conditions and retain much of the simplicity of the inviscid Euler 
equations with the added benefit of being able to capture finite non-equilibrium effects. The 10-moment model is consistent with 
the Navier-Stokes equations at small Mach number and is in better agreement with DSMC as the Mach number and the shock-width 
Knudsen number Kn𝑠 = 𝜆∕𝐿𝑠 increase. The superior performance of the 10-moment results stems from its ability to capture the 
effects of anisotropy and shear in non-Maxwellian VDFs in higher fidelity than the Navier-Stokes model.

The 10-moment results can show deviation from DSMC simulations when the distribution function is far from Maxwellian and 
kinetic effects dominate. Regardless, in a wide range of classic gasdynamic problems, the 10-moment model shows qualitatively good 
agreement with DSMC. More importantly, the robustness and convergence of the 10-moment model is illustrated in this paper. The 
model is also extended to two spatial dimensions, is able to capture finite non-local effects, and reproduce results similar to DSMC 
with low collisionality at a fraction of the computational cost.

Further work currently under way will apply this 10-moment system to electromagnetic fluids (plasmas) by adding further source 
terms where the external force term, 𝐹𝑖 ≠ 0 in Eqn. (1), which may require a different form of the closure. Furthermore, the collision 
operator can be extended to the more physically accurate Boltzmann operator, as well as to include inter-species collisions, both 
elastic (as in this paper) and inelastic excitation/ionization. This model could also be employed in hypersonics with reacting flows, 
which can become significantly rarefied and thus require the use of non-equilibrium models. For such cases, this model generalizes 
easily to unstructured grids in 3 spatial dimensions, using many of the techniques already developed for other fluid models.
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Appendix A. Eigendecomposition of 10-moment system

The eigendecomposition of the 10-moment system has been previously presented in other work [40,67], but for completeness, it 
is reproduced here.

Recall that the flux update to the conservative quantities can be written as

𝜕𝐔
𝜕𝑡

+
𝜕𝐅𝑖
𝜕𝑥𝑖

= 𝜕𝐔
𝜕𝑡

+
(
𝜕𝐅𝑖
𝜕𝐔

)
𝜕𝐔
𝜕𝑥𝑖

= 0 (A.1)

where U is the vector of conservative variables, and F𝑖 are the fluxes of the conservative variables in the 𝑖 direction. For any 𝑖, 
disregarding the closure-based heat flux term, we have

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌

𝜌𝑢𝑥
𝜌𝑢𝑦
𝜌𝑢𝑧

𝜌𝑢2𝑥 + 𝑝𝑥𝑥
𝜌𝑢𝑥𝑢𝑦 + 𝑝𝑥𝑦
𝜌𝑢𝑥𝑢𝑧 + 𝑝𝑥𝑧
𝜌𝑢2𝑦 + 𝑝𝑦𝑦
𝜌𝑢𝑦𝑢𝑧 + 𝑝𝑦𝑧
𝜌𝑢2𝑧 + 𝑝𝑧𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌𝑢𝑖
𝜌𝑢𝑥𝑢𝑖 + 𝑝𝑥𝑖
𝜌𝑢𝑦𝑢𝑖 + 𝑝𝑦𝑖
𝜌𝑢𝑧𝑢𝑖 + 𝑝𝑧𝑖

𝑢𝑥𝑝𝑥𝑖 + 𝑢𝑥𝑝𝑥𝑖 + 𝑢𝑖
(
𝑝𝑥𝑥 + 𝜌𝑢𝑥𝑢𝑥

)
𝑢𝑥𝑝𝑦𝑖 + 𝑢𝑦𝑝𝑥𝑖 + 𝑢𝑖

(
𝑝𝑥𝑦 + 𝜌𝑢𝑥𝑢𝑦

)
𝑢𝑥𝑝𝑧𝑖 + 𝑢𝑧𝑝𝑥𝑖 + 𝑢𝑖

(
𝑝𝑥𝑧 + 𝜌𝑢𝑥𝑢𝑧

)
𝑢𝑦𝑝𝑦𝑖 + 𝑢𝑦𝑝𝑦𝑖 + 𝑢𝑖

(
𝑝𝑦𝑦 + 𝜌𝑢𝑦𝑢𝑦

)
𝑢𝑦𝑝𝑧𝑖 + 𝑢𝑧𝑝𝑦𝑖 + 𝑢𝑖

(
𝑝𝑦𝑧 + 𝜌𝑢𝑦𝑢𝑧

)
𝑢𝑧𝑝𝑧𝑖 + 𝑢𝑧𝑝𝑧𝑖 + 𝑢𝑖

(
𝑝𝑧𝑧 + 𝜌𝑢𝑧𝑢𝑧

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Without loss of generality, we can consider, in particular, the flux in the 𝑥 direction. Then, the conservative flux Jacobian is

𝜕𝐅𝑥
𝜕𝐔

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0

𝑢3 − 3𝑢𝑝𝑥𝑥∕𝜌 3𝑝𝑥𝑥∕𝜌− 3𝑢2 0 0 3𝑢 0 0 0 0 0
𝑢2𝑣−

(
2𝑢𝑝𝑥𝑦 + 𝑣𝑝𝑥𝑥

)
∕𝜌 2𝑝𝑥𝑦∕𝜌− 2𝑢𝑣 𝑝𝑥𝑥∕𝜌− 𝑢2 0 𝑣 2𝑢 0 0 0 0

𝑢2𝑤−
(
2𝑢𝑝𝑥𝑧 +𝑤𝑝𝑥𝑥

)
∕𝜌 2𝑝𝑥𝑧∕𝜌− 2𝑢𝑤 0 𝑝𝑥𝑥∕𝜌− 𝑢2 𝑤 0 2𝑢 0 0 0

𝑢𝑣2 −
(
2𝑣𝑝𝑥𝑦 + 𝑢𝑝𝑦𝑦

)
∕𝜌 𝑝𝑦𝑦∕𝜌− 𝑣2 2𝑝𝑥𝑦∕𝜌− 2𝑢𝑣 0 0 2𝑣 0 𝑢 0 0

𝑢𝑣𝑤−
(
𝑢𝑝𝑦𝑧 + 𝑣𝑝𝑥𝑧 +𝑤𝑝𝑥𝑦

)
∕𝜌 𝑝𝑦𝑧∕𝜌− 𝑣𝑤 𝑝𝑥𝑧∕𝜌− 𝑢𝑤 𝑝𝑥𝑦∕𝜌− 𝑢𝑣 0 𝑤 𝑣 0 𝑢 0

𝑢𝑤2 −
(
2𝑤𝑝𝑥𝑧 + 𝑢𝑝𝑧𝑧

)
∕𝜌 𝑝𝑧𝑧∕𝜌−𝑤2 0 2𝑝𝑥𝑧∕𝜌− 2𝑢𝑤 0 0 2𝑤 0 0 𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where we have defined that {𝑢, 𝑣, 𝑤} = {𝑢𝑥, 𝑢𝑦, 𝑢𝑧}. This complex matrix is difficult to work with; to aid in the eigendecomposition, 
we can express the Jacobian in terms of primitive variables through a change-of-basis, which will have the same characteristic speeds. 
Writing Eqn. (A.1) in primitive form,

𝜕𝐔
𝜕𝚷
𝜕𝚷
𝜕𝑡

+
𝜕𝐅𝑥
𝜕𝐔
𝜕𝐔
𝜕𝚷
𝜕𝚷
𝜕𝑥

= 0, (A.2)

or equivalently,

𝜕𝚷
𝜕𝑡

+
[(
𝜕𝐔
𝜕𝚷

)−1 𝜕𝐅𝑥
𝜕𝐔
𝜕𝐔
𝜕𝚷

]
𝜕𝚷
𝜕𝑥

≡ 𝜕𝚷
𝜕𝑡

+𝐀𝑥
𝜕𝚷
𝜕𝑥

= 0.
29

Using the change-of-basis matrix
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𝜕𝐔
𝜕𝚷

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
𝑢 𝜌 0 0 0 0 0 0 0 0
𝑣 0 𝜌 0 0 0 0 0 0 0
𝑤 0 0 𝜌 0 0 0 0 0 0
𝑢2 2𝜌𝑢 0 0 1 0 0 0 0 0
𝑢𝑣 𝜌𝑣 𝜌𝑢 0 0 1 0 0 0 0
𝑢𝑤 𝜌𝑤 0 𝜌𝑢 0 0 1 0 0 0
𝑣2 0 2𝜌𝑣 0 0 0 0 1 0 0
𝑣𝑤 0 𝜌𝑤 𝜌𝑣 0 0 0 0 1 0
𝑤2 0 0 2𝜌𝑤 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we obtain that the Jacobian under the transformation is

𝐀𝑥 =
[(
𝜕𝐔
𝜕𝚷

)−1 𝜕𝐅𝑥
𝜕𝐔
𝜕𝐔
𝜕𝚷

]
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢 𝜌 0 0 0 0 0 0 0 0
0 𝑢 0 0 1∕𝜌 0 0 0 0 0
0 0 𝑢 0 0 1∕𝜌 0 0 0 0
0 0 0 𝑢 0 0 1∕𝜌 0 0 0
0 3𝑝𝑥𝑥 0 0 𝑢 0 0 0 0 0
0 2𝑝𝑥𝑦 𝑝𝑥𝑥 0 0 𝑢 0 0 0 0
0 2𝑝𝑥𝑧 0 𝑝𝑥𝑥 0 0 𝑢 0 0 0
0 𝑝𝑦𝑦 2𝑝𝑥𝑦 0 0 0 0 𝑢 0 0
0 𝑝𝑦𝑧 𝑝𝑥𝑧 𝑝𝑥𝑦 0 0 0 0 𝑢 0
0 𝑝𝑧𝑧 0 2𝑝𝑥𝑧 0 0 0 0 0 𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is a much more sparse matrix than the original conservative Jacobian, but will have the same eigenvalues and eigenvectors. 
Performing the eigendecomposition on 𝐀𝑥, we find the eigenvalues and right eigenvectors:

𝜆1,2,3,4 = 𝑢

𝜆5,7 = 𝑢+
√
𝑝𝑥𝑥∕𝜌 ≡ 𝑢+ 𝑐1

𝜆6,8 = 𝑢−
√
𝑝𝑥𝑥∕𝜌 ≡ 𝑢− 𝑐1

𝜆9 = 𝑢+
√
3𝑝𝑥𝑥∕𝜌 ≡ 𝑢+ 𝑐2

𝜆10 = 𝑢−
√
3𝑝𝑥𝑥∕𝜌 ≡ 𝑢− 𝑐2

𝑟1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑟2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑟3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑟4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑟5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
𝑐1
0
0
𝑝𝑥𝑥
0

2𝑝𝑥𝑦
𝑝𝑥𝑧
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑟6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

−𝑐1
0
0
𝑝𝑥𝑥
0

2𝑝𝑥𝑦
𝑝𝑥𝑧
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑟7 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
𝑐1
0
0
𝑝𝑥𝑥
0
𝑝𝑥𝑦
2𝑝𝑥𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑟8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

−𝑐1
0
0
𝑝𝑥𝑥
0
𝑝𝑥𝑦
2𝑝𝑥𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑟9 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌𝑝𝑥𝑥
𝑐2𝑝𝑥𝑥
𝑐2𝑝𝑥𝑦
𝑐2𝑝𝑥𝑧
3𝑝2𝑥𝑥

3𝑝𝑥𝑥𝑝𝑥𝑦
3𝑝𝑥𝑥𝑝𝑥𝑧

2𝑝2𝑥𝑦 + 𝑝𝑥𝑥𝑝𝑦𝑦
2𝑝𝑥𝑦𝑝𝑥𝑧 + 𝑝𝑥𝑥𝑝𝑦𝑧
2𝑝2𝑥𝑧 + 𝑝𝑥𝑥𝑝𝑧𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑟10 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌𝑝𝑥𝑥
−𝑐2𝑝𝑥𝑥
−𝑐2𝑝𝑥𝑦
−𝑐2𝑝𝑥𝑧
3𝑝2𝑥𝑥

3𝑝𝑥𝑥𝑝𝑥𝑦
3𝑝𝑥𝑥𝑝𝑥𝑧

2𝑝2𝑥𝑦 + 𝑝𝑥𝑥𝑝𝑦𝑦
2𝑝𝑥𝑦𝑝𝑥𝑧 + 𝑝𝑥𝑥𝑝𝑦𝑧
2𝑝2𝑥𝑧 + 𝑝𝑥𝑥𝑝𝑧𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, 𝜆1 corresponds to the entropy wave and, by observation of 𝑟1, advects variations in density. 𝜆2−4 advect only transverse 
pressures 𝑝𝑦𝑦, 𝑝𝑦𝑧, and 𝑝𝑧𝑧 in the 𝑥 direction and thus can be considered to be transverse pressure waves. 𝜆5,6 and 𝜆7,8 are shear 
waves in the 𝑦 and 𝑧 directions, respectively. These waves advect 𝑣 and 𝑤 in the 𝑥 direction and propagate off-diagonal pressures as 
well. Finally, 𝜆9,10 are the fast acoustic waves, and by observation of 𝑟9,10 directly transport all of the primitive variables. It has been 
30

shown in other works [40] that these are the waves that reduce to the Euler sound waves in equilibrium.
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We can also write down the conservative Steger-Warming fluxes,

F± = 𝜕𝐔
𝜕𝚷

𝐑𝚲±𝐑−1
𝔹

(
𝜕𝐔
𝜕𝚷

)−1
U,

where 𝐑 =
[
𝑟1, ...𝑟10

]
is the matrix of right eigenvectors and 𝚲± is the diagonal matrix of leftward/rightward eigenvalues where 

Λ±
𝑖,𝑖
= 𝜆±

𝑖
. For the original Steger-Warming scheme, 𝜆± = 1

2 (𝜆± |𝜆|). Performing the matrix operations yields F±𝑥 =

1
6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌
(
4𝜆±1 + 𝜆±9 + 𝜆±10

)
4𝜌𝑢𝜆±1 + 𝜌𝑐2

(
𝑀𝑢 + 1

)
𝜆±9 + 𝜌𝑐2

(
𝑀𝑢 − 1

)
𝜆±10

4𝜌𝑣𝜆±1 +
(
𝜌𝑣+ 3 𝑝𝑥𝑦

𝑐2

)
𝜆±9 +
(
𝜌𝑣− 3 𝑝𝑥𝑦

𝑐2

)
𝜆±10

4𝜌𝑤𝜆±1 +
(
𝜌𝑤+ 3 𝑝𝑥𝑧

𝑐2

)
𝜆±9 +
(
𝜌𝑤− 3 𝑝𝑥𝑧

𝑐2

)
𝜆±10

4𝜌𝑢2𝜆±1 +
(
𝜌𝑢2 + 2𝜌𝑢𝑐2 + 3𝑝𝑥𝑥

)
𝜆±9 +
(
𝜌𝑢2 − 2𝜌𝑢𝑐2 + 3𝑝𝑥𝑥

)
𝜆±10

4𝜌𝑢𝑣𝜆±1 + (3𝑝𝑥𝑦 + 𝜌𝑣𝑐2)(1 +𝑀𝑢)𝜆
±
9 +
(
3𝑝𝑥𝑦 − 𝜌𝑣𝑐2

)
(1 −𝑀𝑢)𝜆

±
10

4𝜌𝑢𝑤𝜆±1 + (3𝑝𝑥𝑧 + 𝜌𝑤𝑐2)(1 +𝑀𝑢)𝜆
±
9 + (3𝑝𝑥𝑧 − 𝜌𝑤𝑐2)(1 −𝑀𝑢)𝜆

±
10

4𝜌𝑣2𝜆±1 + 4
(
𝑝𝑦𝑦 −

𝑝2𝑥𝑦
𝑝𝑥𝑥

)
𝜆±1 +
(
2
𝑝2𝑥𝑦
𝑝𝑥𝑥

+ 𝑝𝑦𝑦 + 6𝑝𝑥𝑦𝑀𝑣 + 𝜌𝑣2
)
𝜆±9 +
(
2
𝑝2𝑥𝑦
𝑝𝑥𝑥

+ 𝑝𝑦𝑦 − 6𝑝𝑥𝑦𝑀𝑣 + 𝜌𝑣2
)
𝜆±10

4𝜌𝑣𝑤𝜆±1 + 4
(
𝑝𝑦𝑧 −

𝑝𝑥𝑦𝑝𝑥𝑧

𝑝𝑥𝑥

)
𝜆±1 +
(
2 𝑝𝑥𝑦𝑝𝑥𝑧
𝑝𝑥𝑥

+ 𝑝𝑦𝑧 + 3𝑝𝑥𝑧𝑀𝑣 + 3𝑝𝑥𝑦𝑀𝑤 + 𝜌𝑣𝑤
)
𝜆±9 +⋯

⋯+
(
2 𝑝𝑥𝑦𝑝𝑥𝑧
𝑝𝑥𝑥

+ 𝑝𝑦𝑧 − 3𝑝𝑥𝑧𝑀𝑣 − 3𝑝𝑥𝑦𝑀𝑤 + 𝜌𝑣𝑤
)
𝜆±10

4𝜌𝑤2𝜆±1 + 4
(
𝑝𝑧𝑧 −

𝑝2𝑥𝑧
𝑝𝑥𝑥

)
𝜆±1 +
(
2 𝑝

2
𝑥𝑧

𝑝𝑥𝑥
+ 𝑝𝑧𝑧 + 6𝑝𝑥𝑧𝑀𝑤 + 𝜌𝑤2

)
𝜆±9 +
(
2 𝑝

2
𝑥𝑧

𝑝𝑥𝑥
+ 𝑝𝑧𝑧 − 6𝑝𝑥𝑧𝑀𝑤 + 𝜌𝑤2

)
𝜆±10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where we have defined 𝑀𝑢,𝑣,𝑤 ≡ (𝑢, 𝑣, 𝑤)∕𝑐2.

Appendix B. Details of 2-dimensional wall boundary condition

Recall that in two dimensions, the approximate Gaussian distribution in two velocity dimensions is

𝑓 2𝐷 ≃ 𝜌
𝑚

⎡⎢⎢⎢⎣
𝜌2

(2𝜋)2
(
𝑝𝑥𝑥𝑝𝑦𝑦 − 𝑝2𝑥𝑦

)⎤⎥⎥⎥⎦
1∕2

exp

[
− 𝜌

𝑝𝑥𝑥𝑝𝑦𝑦 − 𝑝2𝑥𝑦

(
𝑝𝑦𝑦𝑤

2
𝑥 − 2𝑝𝑥𝑦𝑤𝑥𝑤𝑦 + 𝑝𝑥𝑥𝑤2

𝑦

)]
,

where the argument of the exponential can be written in the form of the general ellipse,

𝐾
(
𝑝𝑦𝑦𝑤

2
𝑥 − 2𝑝𝑥𝑦𝑤𝑥𝑤𝑦 + 𝑝𝑥𝑥𝑤2

𝑦

)
=𝐴𝑤2

𝑥 +𝐵𝑤𝑥𝑤𝑦 +𝐶𝑤
2
𝑦 (B.1)

Then the angle of the major axis of the ellipsoidal distribution function, i.e., the principal stress direction, to the 𝑥 direction is

𝜃 = tan−1

(
𝐶 −𝐴−

√
(𝐴−𝐶)2 +𝐵2

𝐵

)
. (B.2)

Furthermore, the semimajor and semiminor axes 𝑎, 𝑏 are

𝑎, 𝑏 =

√
2
(
4𝐴𝐶 −𝐵2

)[
(𝐴+𝐶) ±

√
(𝐴−𝐶)2 +𝐵2

]
4𝐴𝐶 −𝐵2 .

After collision with a wall of angle 𝜙 to the 𝑥 direction, this angle must be reflected about the wall so

𝜃𝑝𝑜𝑠𝑡 = 2𝜙− 𝜃𝑝𝑟𝑒,

as shown in Fig. 2. Then, to reconstruct the post-collision pressures, we use generalized ellipse identities:

𝐴𝑝𝑜𝑠𝑡 = 𝑎2sin2
(
𝜃𝑝𝑜𝑠𝑡
)
+ 𝑏2cos2

(
𝜃𝑝𝑜𝑠𝑡
)

𝐵𝑝𝑜𝑠𝑡 = 2
(
𝑏2 − 𝑎2

)
sin
(
𝜃𝑝𝑜𝑠𝑡
)

cos
(
𝜃𝑝𝑜𝑠𝑡
)

𝐶𝑝𝑜𝑠𝑡 = 𝑎2cos2
(
𝜃𝑝𝑜𝑠𝑡
)
+ 𝑏2sin2

(
𝜃𝑝𝑜𝑠𝑡
)
.

Finally, back-substituting these into Eqn. (B.1) yields the post-collision pressures.

This method can be extended to three dimensions by considering transforming into the plane spanned by the bulk velocity 𝐮 and 
the wall normal �̂�. In this case, a similar algorithm for a generalized 3-D ellipsoid may be used.

This method can also be extended to include an accommodation coefficient 𝛼 by mixing the specularly reflected VDF with an 
31

isotropic diffusely reflected VDF,
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Fig. 20. Comparison of DSMC to 10-moment fluid results using Maxwellian and Gaussian for Chapman-Enskog expansion showing (a) 𝑝′
𝑥𝑥

and (b) 𝑝′
𝑦𝑦

in a Mach 2
normal shock.

𝑓 reflected = 𝛼𝑓diffuse + (1 − 𝛼)𝑓 specular, (B.3)

where 𝑓 specular is calculated as above and 𝑓diffuse is the stationary Maxwellian distribution function where {𝜌, 𝑢𝑖, 𝑝}post,diffuse =
{𝜌, 0, (𝑝 + 𝜌𝑢2∕3)}pre. The results in this study only consider 𝛼 = 0, that is, a fully specular boundary condition; a rigorous testing of 
this boundary condition is left for future work.

Appendix C. Extended comparison between 10-moment Gaussian and Maxwellian closures

For completeness, Fig. 20 presents an extension of Fig. 6 to include the profiles of 𝜌 and 𝑢𝑥 to demonstrate that the heat flux 
closure affects all of the flow variables.

The indirect effect of the heat flux on density and velocity can be thought of in two ways. Firstly, by directly affecting pressure, 
it affects the wavespeeds and thus the eigenvector transport. Since sound-speed dependent eigenvectors 

(
𝜆5−10
)

transport all of the 
flow variables, the heat flux does so also. Secondly, by affecting the pressure profile, this changes the momentum flux, affecting 
velocity, which affects mass flux. In short, higher-order moments are the flux of the next-highest moment, and so differences in the 
highest moment (heat flux) can climb up the chain of moments and affect the profiles of all of the flow variables.
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