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In this work, we target the acceleration of particle-in-cell (PIC) methods for Hall
thrusters by way of data-driven reduced-order modeling through the dynamic mode de-
composition (DMD). The primary goal of data-driven reduced-order modeling is to learn
a system’s dynamics from observations of its state over time. Once obtained, the reduced-
order model can be used in place of the original system for cheap forecasting of its state.
In this work, we build reduced-order models for the dynamics of kinetic PIC simulations
of a Hall thruster plasma. Specifically, we apply the linear DMD approximation to a
fully-kinetic simulation of a Hall thruster discharge channel and separately to a 3d hybrid
fluid/PIC simulation of a Hall thruster plume. We found that a rank-truncated linear fit
is sufficient to qualitatively, and sometimes quantitatively, predict the primary modes of
the plasma dynamics, including the azimuthal wave propagations in the discharge channel
that are indicative of the electron drift instability. We also observed that high noise, high-
dimensional, and multi-scale behavior presents a computational challenge for efficiently and
accurately fitting PIC simulations. With further refinement, we envision that “kinetic”
reduced-order models of a Hall thruster have potential use in downstream applications
such as online control and closure modeling.

I. Introduction

The high efficiency and specific impulse of Hall thrusters has led to their increasing deployment for satellite
station-keeping, orbit-raising, and deep-space missions.1 As missions scale to longer durations and higher
powers, there is an increasing need for modeling and simulation efforts to aid experiment for design, test, and
qualification. State-of-the-art (SOTA) Hall thruster models use fluid or hybrid fluid/particle descriptions
of the discharge plasma coupled to the applied electric and magnetic fields to predict key performance
metrics such as thrust, erosion rates, and efficiency. SOTA models are typically tuned to match available
experimental data for a given thruster and operating condition, and then function as a “soft sensor” to query
new or inaccessible properties of the plasma; this approach has led to the design of magnetically-shielded
thrusters,2 among other innovations, and continues to play a role in design and qualification today.

Alternatively, SOTA models do not readily generalize across thrusters and operating conditions and must
be tuned to fit experiments on a case-by-case basis. Demonstrating a “predictive”, generalizable Hall thruster
model has been a topic of wide consideration3 with many promising benefits for Hall thruster development,
but to date has been precluded by the unknown physics of anomalous electron transport.4,5 It is widely
believed that kinetically-driven instabilities result in turbulent transport of electrons from cathode to anode,6

a phenomenon which is critical in the overall operation of the device but is not captured by a fluid description
of the plasma. Instead, a fully-kinetic description through the solution of the Boltzmann equation for each
plasma species is required to resolve the underlying physics.7
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The particle-in-cell (PIC) method provides a straightforward and intuitive approach for the solution of
the kinetic Boltzmann equation.8 The distribution function of each species is approximated by a finite
number of computational “macro-particles” that represent a much larger number of real physical particles.
The macro-particles obey Newton’s laws and are time-advanced by the electric and magnetic fields. The
particles may undergo collisional processes with surfaces or other species. The charge and current density
carried by the particles are then deposited onto a finite-element mesh, where Maxwell’s equations are applied
to update the electric and magnetic fields (typically the electrostatic assumption is made in Hall thrusters
to update an electrostatic potential through Poisson’s equation). The fields are then interpolated to the
particle positions and the cycle repeats.

In principle, a 3d full-PIC simulation of a thruster with sufficient spatial/temporal resolution of the
turbulent electron transport could serve as a “numerical experiment” for studying complex thruster behavior
(akin to direct numerical simulation in the CFD community). Indeed, such attempts at increasing 3d
resolution have been recently performed.9–11 However, the memory and computational costs for increasing
resolution and device scale quickly exceed modern computing capabilities. Furthermore, such large-scale
simulations are not practical for many-query engineering tasks such as design, optimization, and uncertainty
quantification. It is therefore desirable to distill the pertinent kinetic information available from PIC into
practicable closures for SOTA fluid Hall thruster models.

To this end, we target the acceleration of existing PIC methods by way of building data-driven reduced-
order models (ROMs). The general principle behind a ROM is that the dynamics of high-dimensional physical
systems (e.g. the evolution of field quantities in a PIC simulation) can be represented in a low-dimensional
space. A ROM can furthermore be learned non-intrusively directly from numerical or experimental data
of the system, which is especially pertinent for PIC simulations where the field quantities evolve from
complex interactions with macro-particles and have unknown governing equations. Similar strategies have
been applied to PIC for other systems12–14 and more recently to similar Hall thruster configurations;15,16

we extend these works to new Hall thruster test cases and conditions. Specifically, we apply the dynamic
mode decomposition17 to predict the time-evolution of field quantities in a fully-kinetic PIC simulation of
the Hall thruster discharge channel, and of a separate hybrid fluid/PIC simulation of a Hall thruster plume.
We compare the results for varying rank truncations of the dynamic mode decomposition.

Our contributions include the analysis of two verification PIC simulations of a Hall thruster plasma and a
preliminary test of data-driven reduced-order modeling for Hall thruster PIC data. In Section II, we outline
the PIC simulations and the ROM methods. In Section III, we summarize the performance of the ROMs
and compare across varying rank truncations. Finally, we provide concluding remarks and provide paths for
continuing work. We envision that the acceleration of PIC methods by reduced-order modeling can inform
and improve kinetic closures in SOTA fluid Hall thruster models to ultimately enable their wider usage as a
predictive engineering tool.

II. Methods

In this section, we outline the two PIC simulations under consideration, namely a full-PIC study of a
Hall thruster discharge channel and a hybrid fluid/PIC study of a Hall thruster plume. Then, we describe
the basis of the dynamic mode decomposition and the specific methods we apply for reduced-order modeling
of the PIC simulations. The performance of the ROMs are presented and discussed in Section III.

A. Hall thruster PIC simulations

We first study a fully-kinetic (i.e. particle description of all species) simulation of the discharge channel using
the open-source Warp-X code18 on the axial-azimuthal benchmark from Charoy et al.19 Then, we study a
hybrid simulation of a Hall thruster plume based on that of Boyd et al,20 but modified to make use of the
3d Air Force Research Laboratory in-house Thermophysics Universal Research Framework (TURF) code.21

The simulation settings are summarized in the following subsections.

1. Fully-kinetic discharge channel (Warp-X18)

The highly-scalable, open-source Warp-X PIC code was adapted in a parallel study22 for fully-kinetic sim-
ulation of the Hall thruster discharge channel and was benchmarked against the 2d axial-azimuthal case of
Charoy et al.19 This benchmark was developed to study the growth of the azimuthal electron drift instability,
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which plays a key role in turbulent axial electron transport. Critically, the benchmark treats both electrons
and ions with a particle description; this is a necessary approach for resolving the turbulent transport of
interest to fluid closure models, which makes this a useful test case for our application. The computational
domain is a structured grid of 512 × 256 cells of total length 2.5 cm × 1.28 cm in the axial-azimuthal di-
rections, respectively, as shown in Figure 1. We study three field quantities on the computational mesh,
namely the ion density, and the axial and azimuthal current densities. The simulation runs with a time step
of ∆t = 5 ps for a total duration of tf = 20 µs. For our analysis, we only use data after transient startup
(t = 10 . . . 20 µs).
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Figure 1: Computational domain of the 2d axial-azimuthal PIC benchmark of a Hall thruster discharge
channel from Charoy et al.19

Ultimately, saving once every 2000 time steps, this results in a (512, 256, 3, 1000) array of PIC data for
1000 total snapshots of the three field quantities (ion density and axial/azimuthal current densities) on the
structured mesh grid. We leave the rest of the simulation details in the original work.19

2. Hybrid fluid/particle Hall thruster plume (TURF21)

TURF21 is a modular computational framework enabling the study of thruster, plume, and spacecraft
interaction. In a parallel study,23 we adapt TURF to compare with the simulation results of Boyd et
al20 in predicting plume properties of an in-flight SPT-100.24 The model treats electrons as an isothermal,
unmagnetized, collisionless fluid and heavier species (ions and neutrals) as particles. The plasma potential
is obtained by assuming quasineutrality. Typical beam properties of the SPT-100 are used as injection
conditions at the computational origin. The neutral atoms are injected with a number density of 1018 m−3,
face-normal velocity of 300 m/s, and a temperature of 1000 K, and the ions with a density of 1017 m−3,
a normal velocity of 17000 m/s, and a temperature of 4 eV. We assume both species have an effective
divergence angle of 15◦ and are injected with radially-uniform properties. The Boltzmann relation is used
with an electron temperature of 3 eV, fixed over the computational domain. Normal electric fields at the
outflow boundaries are set to zero and particles exiting the domain are removed from the simulation.

The domain consists of a 120×100×100 structured 3d grid over a 12×10×10 m−3 volume representing
one quadrant of an exhaust plume, as shown in Figure 2. We study two field quantities on the computational
mesh, namely the ion and neutral densities.

The thruster is oriented along the positive x-axis of an (x, y, z) Cartesian coordinate system, with the
range x ∈ (−2, 10) allowing backward scattering of ions in the plume due to collisions. Charge-exchange
collisions are treated with the direct simulation Monte Carlo method (as in the original work) and elastic
collisions are treated with the Monte Carlo collision method provided in TURF. The simulation runs for
tf = 62.5 ms with a time step of ∆t = 5 µs. Removing startup transients before t = 2.5 ms and saving once
every 50 time steps, we result in a (120, 100, 100, 2, 240) array of PIC data for 240 total snapshots of the two
field quantities (ion and neutral density) on the 3d structured grid.
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Figure 2: Computational domain of the 3d hybrid fluid/PIC simulation of a Hall thruster plume using the
TURF code.21

B. Dynamic mode decomposition

In this section, we outline the basis of dynamic mode decomposition (DMD) for reduced-order modeling and
describe the specific methods we apply to the PIC simulations. The time-evolution of a dynamical system
with n states x(t) ∈ Rn can be represented with the initial value problem:

ẋ = f(x), x0 ≜ x(t = 0), (1)

which is solved by standard time-stepping numerical tools to obtain the system state at some future time
x(t = tf ) for the known dynamics f and initial condition x0. The guiding principle of DMD is to approximate
the dynamics of x as linear via:

ẋ ≈ Ax, for which x(t) = eAtx0. (2)

This linear assumption permits the analytical solution x(t) given in Eq. (2) for any future time t. The
main task of DMD then is to solve for the best-fit matrix A from numerical or experimental data. Given
the states x1 . . .xm observed at k = 1 . . .m distinct time steps, and given the discrete-time form of Eq. (2)
via xk+1 = Adxk with xk ≜ x(t = k∆t), the discrete-time matrix Ad = eA∆t can be obtained through the
least-squares fit:

X =

 | |
x1 . . . xm−1

| |

 , X ′ =

 | |
x2 . . . xm

| |

 , (3)

X ′ ≈ AdX, with (4)

Ad = argmin
B

∥X ′ −BX∥2 = X ′X†. (5)

The primary challenge of this approach applied to engineering simulations (e.g. PIC) is the storage and
computational requirements of Ad ∈ Rn×n, typically with n ≫ m due to high spatial mesh resolution in
the computational domain. As such, we explore several truncation levels of the standard exact-DMD.25 The
exact-DMD approach uses a rank-r truncation of the SVD modes of the data matrix via:

X = UΣV ∗ =

 | |
u1 . . . un

| |



σ1

. . .

σm−1



— v1 —

...

— vm−1 —

 (6)

≈ UrΣrV
∗
r =

r∑
i=1

σiuiv
∗
i , (7)
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where the singular values σi are arranged in descending order with corresponding left- and right-singular
vectors ui and vi, respectively. The discrete-time dynamics Ad are then projected onto the reduced basis
Ur with the similarity transform Ãd = U∗

rAdUr. An eigen-decomposition in the reduced space of Ãd can
be related25 to a reduced set of eigenvectors ϕi and eigenvalues λi, i = 1 . . . r of the full discrete-time
dynamics Ad. Finally, a diagonalization of the continuous-time dynamics A = ΦΩΦ−1 permits the modal-
decomposition form of the solution in Eq. (2) via:

x(t) = ΦeΩtΦ−1x0 ≈
r∑

i=1

ϕie
ωitbi, (8)

where Ω = diag(ωi), ωi = lnλi/∆t resulting from A = lnAd/∆t, and bi is an amplitude from the i-th
component of Φ−1x0. As given by Eq. (8), the approximation of x(t) ultimately results from the rank-r
truncation of the full eigenbasis Φ = [ϕ1 . . . ϕn], with higher accuracy for larger ranks. In this work, we
compare three truncation ranks r = (10, 50, 100) on the accuracy of DMD applied to the PIC datasets.
We note that log normalization was applied for ion and neutral density field quantities (due to orders of
magnitude ranges in their raw data values) and (0, 1) min-max scaling for all other field quantities.

III. Results

1. Fully-kinetic discharge channel (Warp-X18)

We first test the performance of exact-DMD in predicting the steady-state dynamics of the fully-kinetic
Warp-X PIC simulation of the Hall thruster discharge channel. The state vector x in Eq. (1) is composed
in this case of the field quantities on the spatial PIC grid. We use the first 50% of time snapshots to train
the DMD fit and then compare future-time DMD predictions to the ground truth PIC simulation. Figure
3 compares the DMD prediction of ion density at the final prediction time step to the ground truth for
truncation ranks of r = 10, 50, and 100. We additionally report the absolute error |x − x̂| between the
ground truth x and the DMD prediction x̂.

The primary steady-state modes of ion density in this test case include the strong ionization in the
upstream axial region and the azimuthally propagating waves that are indicative of the electron drift insta-
bility. We observe in Figure 3 that a rank-10 fit is sufficient to capture this phenomena, with higher rank
approximations not significantly improving the fit further. Regions of high absolute error indicate that the
DMD fit may be out of phase with the ground truth.

Figure 4 summarizes the relative L2 error ∥x−x̂∥2/∥x∥2 over time, with the gray shaded region indicating
the training period. Note that t = 0 corresponds to the start of steady-state operation, with a final time
of tf = 10 µs. We observe in Figure 4 that using higher rank approximations results in improved training
accuracy, but does not lead to significant improvement in future-time prediction. This may indicate again
that the rank-10 approximation is sufficient to capture the majority of the steady-state dynamics, with a
relative error of around 7% at the end of the prediction interval. We note that a rank-r SVD truncation of
a data matrix X ∈ Rn×m for n states and m time steps provides a compression ratio of nm/(r(n+m+ 1)),
which is ≈ 100 for the rank-10 approximation of the Warp-X dataset presented here.

In addition to ion density, we also study the axial and azimuthal current densities in the Warp-X PIC
simulation. Figure 5 compares the axial profiles of the two current densities for the same three rank trun-
cations of r = 10, 50, and 100. Due to inherent small-scale fluctuations and statistical noise, we average
the current density profiles over the time-prediction window t = 5 . . . 10 µs and spatially over the azimuthal
direction. The relative errors (∥x− x̂∥2/∥x∥2) for each case are provided in Table 1.

We observe in Figure 5 that exact-DMD is able to capture the average profile of axial current density in
the discharge channel, as well as the strong azimuthal Hall current indicated by the large negative spike in
azimuthal current density in the upstream discharge channel. We note the spikes in current density at the
end of the domain are due to plasma sheath boundary conditions in the original PIC simulation. Overall,
we observe that exact-DMD captures the steady-state profiles of axial and azimuthal current densities well
for a rank-truncation of r = 10, with higher ranks not significantly improving the fits.

2. Hybrid fluid/particle Hall thruster plume (TURF21)

In this section, we report the performance of exact-DMD in predicting the dynamics of the hybrid fluid/particle
TURF simulation of a Hall thruster plume. We again use the first 50% of time snapshots to train the DMD
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Figure 3: Comparison of exact-DMD ion density predictions to the ground truth Warp-X simulation at the
final prediction time for truncation ranks of r = 10, 50, and 100. The rank-10 approximation captures the
dominant steady-state modes of ion density. Higher ranks do not significantly improve the fit.
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Figure 4: Exact-DMD relative errors in ion density over time for the Warp-X PIC simulation for truncation
ranks of r = 10, 50, and 100. The shaded gray region indicates the training period. Higher rank approxima-
tions improve the fit during training, but do not significantly improve future-time prediction accuracy.
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Figure 5: Comparison of exact-DMD current density predictions to the ground truth Warp-X simulation for
truncation ranks of r = 10, 50, and 100. The current densities are averaged over the azimuthal direction and
over the time-prediction window t = 5 . . . 10 µs. The ground truth steady-state profiles are well-captured by
the DMD predictions.

Table 1: Exact-DMD relative errors of axial and azimuthal current densities for varying rank truncations.

Relative error

Rank Axial current density Azimuthal current density

10 0.0282 0.0050

50 0.0205 0.0033

100 0.0250 0.0031

fit and compare prediction accuracy to the ground truth PIC simulation for future time steps. Figure 6
compares the exact-DMD predictions of plume ion density at the final prediction time step for truncation
ranks of r = 10, 50, and 100, with the absolute error |x−x̂| between the ground truth x and DMD prediction
x̂. Figure 7 makes a similar comparison at the final time step for the prediction of neutral density in the
plume. For simplicity, we only show an (x, y) cross-section at z = 0 of the full 3d simulation results here
(see Figure 2), but we include 3d comparisons in Appendix A.

The plume ion density is characterized by the main beam expanding along the positive x-axis and a
scattered beam that expands radially away from the main beam due to collisions with slow-moving neutrals.
The neutrals diffuse radially away from the injection source at x = 0 with a divergence angle of less than 90
deg (i.e. the sharp cutoff region in Figure 7). In contrast to the Warp-X simulation, a rank-10 approximation
is not sufficient to capture the steady-state dynamics in the TURF simulation, as observed by the absence
of the main beam in the DMD predictions in Figures 6 and 7. As higher ranks are included, the primary
characteristics of the main and scattered beams are qualitatively predicted, while the absolute error is still
high.

The relative error of the DMD ion and neutral density predictions over time are summarized in Figure
8. The 50% training period is indicated by the shaded gray region. We again compare the DMD fit for
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Figure 6: Comparison of exact-DMD ion density predictions to the ground truth TURF simulation at the
final prediction time for truncation ranks of r = 10, 50, and 100. Predictions are shown as (x, y) cross-
sections at z = 0 of the full 3d domain (see Figure 2). The DMD prediction improves for higher rank
approximations, with the main plume characteristics not captured until r = 100.

8
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.



0

2

4

6

8

10

y
(m

),
r

=
10

Truth (m−3) Exact-DMD (m−3) Absolute error (m−3)

0

2

4

6

8

10

y
(m

),
r

=
50

0.0 2.5 5.0 7.5 10.0

x (m)

0

2

4

6

8

10

y
(m

),
r

=
10

0

0.0 2.5 5.0 7.5 10.0

x (m)
0.0 2.5 5.0 7.5 10.0

x (m)

109

1011

1013

1015

109

1011

1013

1015

109

1011

1013

1015

109

1011

1013

1015

109

1011

1013

1015

109

1011

1013

1015

Figure 7: Comparison of exact-DMD neutral density predictions to the ground truth TURF simulation
at the final prediction time for truncation ranks of r = 10, 50, and 100. Predictions are shown as (x, y)
cross-sections at z = 0 of the full 3d domain (see Figure 2). The DMD prediction improves for higher rank
approximations, with the main plume characteristics not captured until r = 100.

rank truncations of r = 10, 50, and 100. We observe in Figure 8, similar to the Warp-X results, that higher
rank approximations serve to improve training accuracy but do not generalize to future-time prediction.
However, even though the rank-100 relative error is still increasing at the end of the prediction window, it
produces qualitatively better results. This may indicate that higher ranks or more training data are required
for improved long-time prediction accuracy.

Overall, we obtained a qualitatively good fit to the TURF plume dynamics using a rank-100 DMD
approximation, while the magnitude of error in future-time prediction is still high. This result illustrates
some of the challenges of reduced-order modeling for PIC simulations. In this case, higher ranks and more
training data are likely required simply because the 3d problem has more states (i.e. mesh points) to capture
than a similar 2d simulation (roughly 6x more between the TURF and Warp-X cases in this study). As more
data and higher ranks are included, the computational and memory requirements can make the solution
infeasible. This problem for larger datasets may be mitigated by using incremental techniques.26

Another challenge with building reduced-order models for PIC simulations is inherent noise in the field
quantities. We observed high noise, for example, in the current densities from the Warp-X simulation – these
quantities may be predicted in an average sense as we demonstrated, but it is difficult for exact-DMD to
capture the dynamics of this behavior. We also observed large ranges in ion and current density values in
the TURF simulation, often spanning several orders of magnitude between the main and scattered plume
regions. Along with appropriate normalization, higher ranks are likely required to capture the dynamics of
both regions adequately.
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Figure 8: Exact-DMD relative errors in ion and neutral densities over time for the TURF PIC simulation
using rank truncations of r = 10, 50, and 100. The shaded gray region indicates the training period. Higher
rank approximations improve training accuracy but do not generalize to improved future-time prediction
accuracy.

IV. Conclusion

In this work, we considered the data-driven, non-intrusive reduced-order modeling of Hall thruster PIC
simulations through the dynamic mode decomposition (DMD). We first applied DMD for future-time pre-
diction of the fully-kinetic dynamics in an axial-azimuthal Hall thruster discharge channel simulation – we
found that a low-rank approximation was sufficient to capture the primary modes of the plasma, including
the azimuthal waves characteristic of the electron drift instability. Then, we applied DMD to predict the
dynamics of a 3d hybrid fluid/PIC simulation of a Hall thruster plume – while we obtained a qualitative
fit with the data, we found the high-dimensionality and multi-scale nature of the 3d simulation difficult to
capture with DMD, with higher ranks and more training data likely required to obtain a better fit, along
with the potential use of iterative methods to mitigate increased memory and computational requirements.

Overall, we demonstrated that acceleration of Hall thruster PIC simulations is achievable through data-
driven reduced-order modeling. In this study, a simple rank-truncated linear fit of the plasma dynamics
was sufficient to obtain qualitative, and in some regions even quantitative, agreement with the ground truth
PIC simulations. Furthermore, the primary modes of interest were captured by the linear fit, namely the
azimuthal wave propagation of interest in studying anomalous electron transport. We envision that the
ability to cheaply run “kinetic” reduced-order models may have potential application in areas such as online
control, parameter/state estimation, and even in use as a direct information source for fluid closure models.
Future work includes refinement of the current linear methods, analysis of more expressive nonlinear methods,
expansion to more parameter and operating regimes, and integration into downstream applications such as
online control and closure modeling.

Appendix

A. 3d TURF comparison plots

In this section, we supplement the results of Section III.2 with 3d comparison plots between the ground truth
TURF PIC simulation and the DMD prediction. We show the 3d profiles of ion and and neutral densities
in the plume in Figures 9 and 10, respectively, for the highest accuracy rank-100 truncation only. The field
quantities are shown as three perpendicular cross-sections of the primary (x, y, z) coordinate planes at the
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final prediction time step.
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Figure 9: Comparison of exact-DMD (r = 100) ion density prediction to the ground truth TURF simulation
at the final time step. Ion density is shown on three perpendicular cross-sections of the primary (x, y, z)
coordinate planes. Exact-DMD qualitatively predicts the full 3d profile of the main and scattered beams in
the computational domain.
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Figure 10: Comparison of exact-DMD (r = 100) neutral density prediction to the ground truth TURF
simulation at the final time step. Neutral density is shown on three perpendicular cross-sections of the
primary (x, y, z) coordinate planes. Exact-DMD qualitatively predicts the full 3d profile of the neutral
diffusion from the thruster injection source.

We observe qualitative agreement between the exact-DMD prediction and the ground truth PIC simu-
lation of the 3d Hall thruster plume. The main and scattered beam profiles are captured in Figure 9 and
the radial neutral diffusion is captured in Figure 10. Overall, the simulation displays axisymmetry around
the x-axis which is well-captured by the DMD approximation. It is evident that the majority of the compu-
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tational domain is filled with low density or vacuum conditions as opposed to the high density of the main
beam plume – we observe noisier DMD predictions in these regions due to lack of any interesting dynamic
behavior. We note this limitation especially when the object of the simulation is to accurately predict ion
energy in these far-field regions for studying spacecraft interaction and erosion processes.
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