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An extended Kalman filter (EKF) is used to estimate unknown parameters in one-dimensional
models, with the goal of estimating the electron mobility coefficients within real time in Hall
effect thruster models. The estimator predicts the time history of unknown states based on
knowledge of the plasma dynamics coupled with experimental measurements. Numerical
examples such as heat advection and thermal conduction demonstrate the effectiveness of the
extended Kalman filter with one-dimensional models before initial applications to a Hall effect
thruster case to estimate electron mobility parameters. While the extended Kalman filter is
able to reasonably estimate the two simple cases of linear advection and thermal diffusion, the
application to the Hall effect thruster model proves riddled with numerical artifacts and highly
sensitive physical relations.

I. Nomenclature

𝐴 = thruster inlet area
𝐵 = magnetic field
𝐸 = electric field
𝑒 = elementary charge
𝑓 = physics-based propagation scheme
𝒉 = observation function
𝐼 = identity matrix
𝐼𝑑 = discharge current
𝑗𝑑 = net current density
𝐾 = Kalman gain
𝑘𝐵 = Boltzmann constant
𝐿𝑐ℎ = length of the channel
𝑚𝑖 = mass of ion
𝑚𝑒 = mass of an electron
𝑁𝑖 = number density of ions
𝑁𝑛 = number density of neutrals
𝑛𝑒 = number density of electrons
𝑃 = covariance matrix
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𝑝 = pressure or electrons, subscript 𝑒, or ions, subscript 𝑖
𝑅𝑘 = measurement noise covariance
𝑇𝑒 = electron temperature
𝑡 = time
𝑢𝑒 = electron velocity in the 𝑥 or 𝑦 directions
𝑉𝑎 = anode sheath potential
𝒙 = state vector
𝒚 = measurement signal vector
Γ = electron 𝑒 or ion 𝑖 flux
𝜇𝑒,⊥ = cross-field electron mobility
𝜈𝑚 = momentum transfer collision frequency
Ω = Hall parameter
𝜔𝐵 = electron gyrofrequency
𝜙 = electric potential

II. Introduction
While Hall effect thrusters (HETs) offer enticing advantages for deep-space missions, their use remains limited due

to poorly understood lifespan limiting phenomena. Computational models have not yet surpassed ground testing in
predictive capabilities, meaning that the most reliable data are come from experimental work which may suffer from
limited data acquisition rates and intrusive measurement techniques. In part, these limitations have hindered the growth
of computational models into truly predictive models that encapsulate the complex temporal and spatial dynamics of
plasma processes. Further use and development of HET technology hinges on the development of reliable, predictive
models to advance designs and provide on-board control capabilities by better understanding thruster lifespan limiters.
To this end, a variety of physics-based models have been developed to replicate complex physics, ranging from kinetic

simulations that capture non-Maxwellian effects to fluid models that use device-scale calculations using simplified
electron transport dynamics, such as drift-diffusion models [1–5]. Research with these models continue to develop
increasingly high-fidelity models that have high computational costs. Separately, recent advances in data-driven
modeling are providing new research opportunities for the use of lower-fidelity models supplemented with experimental
data. The ability to use experimental data to uncover the time histories of non-observed quantities also enables a robust
calculation setup that allows for estimation of the state in real time, e.g., on-board a spacecraft. A cursory approach to
such data-driven modeling approaches has been performed using sparse regression techniques with an HET model
and sparse identification for fluid vortex shedding [6, 7]. Recently, Greve et al. have developed an automated model
calibration framework using the Wasserstein metric [8].
This work aims to use an extended Kalman filter (EKF) in conjunction with a one-dimensional (1D) Hall effect

thruster model to estimate the time histories of unknown states and parameters such as electron mobility coefficients.
While state estimation techniques have been used in artificial intelligence, navigation, and fault detection, their application
to plasma physics is not widely reported in literature. In previous work, Greve et al. developed a physics-constrained
EKF to model low-frequency plasma oscillations in Hall effect thrusters and pulsed plasma modes in inductively
coupled plasmas using a zero-dimensional (0D) global model with simplified plasma chemistry [9]. This work presents
incremental testing of the EKF to demonstrate its effectiveness with particle drift through a linear advection testcase in
section (IV), and diffusion through a thermal diffusion study in section (V). The results of these simple one-dimensional
studies are applied to a one-dimensional quasineutral drift-diffusion Hall effect thruster model in section (VI), revealing
the challenges of this data-driven modeling technique.

III. Development of a State Estimation Method
Filtering uses physics-based models in conjunction with time-dependent experimental data. The most accurate state

estimation technique is the particle filter, which propagates all possible state trajectories to obtain uncertainties of the
model estimation. While accurate, the computational time of these filters can be more expensive than desired. To reduce
the computational cost, one can make approximations for the uncertainty distribution such as the Kalman filter, which
assumes Gaussian-shaped uncertainties. A further extension of the Kalman filter, known as the extended Kalman filter
(EKF), makes use of a Taylor series expansion in the near region of the model to enable the filter to handle moderate
nonlinearities.
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As derivations of the extended Kalman filter are widely available in literature [10–13], only a brief discussion
is presented. In particular, this work is based upon the continuous-discrete extended Kalman filter, analogous to a
predictor-corrector scheme. A physics-based model is used to continuously propagate the state estimates and associated
covariances, while discrete measurement data points are used to correct the estimation. The predictor step corresponds
to temporal evolution of the state vector from 𝑥+

𝑘−1 to 𝑥
−
𝑘
and the corrector step updates 𝑥−

𝑘
to 𝑥+

𝑘
, where superscript (−)

and (+) indicate the estimation before and after the measurement updates, respectively, and 𝑘 denotes the time step at
which data are used to update the state estimates. For notation purposes, the tilde (˜) symbol denotes a measurement,
and the hat (ˆ) symbol is an estimate.
The extended Kalman filter can be applied to any general dynamical system of state vector 𝒙(𝑡) written as

¤𝒙(𝑡) = 𝒇 (𝒙(𝑡), 𝑡) + 𝐺 (𝑡)𝝎(𝑡) where 𝒇 is the physics-based model, 𝐺 is a process noise gain matrix, 𝝎 is the process
noise, and 𝑡 is time. The incoming measurements can be written as �̃�𝑘 = 𝒉(𝒙𝑘) + 𝝂𝑘 where 𝒉 is the observation function
and 𝝂 is the zero-mean measurement noise at every discrete time step 𝑘 , when the measurements are obtained.
The state vector, �̂�, and covariance (error) matrix, 𝑃(𝑡) = 𝐸{Δ𝒙Δ𝒙𝑇 } where Δ𝒙 = �̂�(𝑡) − 𝒙(𝑡) and 𝐸 is the

expectation, are continuously propagated based on the physics-based model as

¤̂𝒙(𝑡) = 𝒇 (�̂�(𝑡), 𝑡), (1a)
¤𝑃(𝑡) = 𝐹 (�̂�(𝑡), 𝑡)𝑃(𝑡) + 𝑃(𝑡)𝐹𝑇 (�̂�(𝑡), 𝑡) + 𝐺 (𝑡)𝑄(𝑡)𝐺𝑇 (𝑡), (1b)

where 𝐹 = 𝜕 𝒇 /𝜕𝒙 | �̂�(𝑡) is the Jacobian matrix of the model function of the system, which allows for a Taylor series
expansion of the nonlinear model around the estimated state, and 𝑄 is the process noise covariance. When a discrete
measurement dataset arrives in time, the Kalman filter corrects the estimate using the discrepancy between the most
recent predicted state and the new measurement data. The states and covariances are corrected from the continuous
propagation based on the physics-based model, the superscript minus (-), to the updated values, the superscript plus (+),
as

�̂�+𝑘 = �̂�−𝑘 + 𝐾𝑘

[
�̃�𝑘 − 𝒉(�̂�−𝑘 )

]
, (2a)

𝑃+
𝑘 =

[
𝐼 − 𝐾𝑘𝐻𝑘 (�̂�−𝑘 )

]
𝑃−
𝑘 , (2b)

where 𝐻𝑘 (�̂�−𝑘 ) ≡ 𝜕𝒉/𝜕𝒙 | �̂�−
𝑘
is a basis function that denotes the relationship between the measurement and the state

vector,

𝐾𝑘 = 𝑃−
𝑘𝐻

𝑇
𝑘 (�̂�

−
𝑘 )

[
𝐻𝑘 (�̂�−𝑘 )𝑃

−
𝑘𝐻

𝑇
𝑘 (�̂�

−
𝑘 ) + 𝑅𝑘

]−1 (3)

is the Kalman gain, and 𝑅 is the measurement noise covariance. Note that the Kalman gain, determined, by the
estimation uncertainties and the measurement noise, is used to adjust the state estimates and covariances, as shown in
Eqs. (2a) and (2b).

IV. Linear Advection
This study demonstrates that the EKF can be used to track spatial variations in time, emblematic of electron drift

within a Hall effect thruster. The EKF is applied to a one-dimensional linear advection testcase with the goal of
recovering the sinusoidal, time-dependent dynamics of the entire domain given a zero-condition initial domain and two
measurement locations. As this study indicates the first testcase in one dimension for this work, the following study is a
recreation of a test case presented in Ref. 14.
For this case, the state vector is written as �̂� = [𝒘]𝑇 where 𝑤 represents the vector of every cell value in the problem.

For this particular test, 120 cells are equally spaced from 0 to 30. The reference solution is created based on the
sinusoidal wave propagation equation 𝑤 = sin[2𝜋(𝑛Δ𝑥 − 𝑡)/𝜆], where 𝑡 > 0 is the current time, 𝑛 is the cell number,
Δ𝑥 = 0.25 is the cell size, and 𝜆 = 𝐿/2 is the wavelength. The initial guess for the state vector is zero for every cell,
shown in Fig. 1(a), while the covariances are set as a Gaussian correlation function based on a user-defined folding
distance, 𝑟𝑒 [14]. The filter is propagated forward in time with a propagation timestep of 0.06, and new measurement
data arrive with a timestep of 0.3. The values at cells 𝑥 = 5 and 𝑥 = 20 are used as two measurement signals for this
particular case. The model covariance is set constant at 𝑄 = 1 while the measurement noises for each measured cell are
𝜎1 = 0.05 and 𝜎2 = 0.1.
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Figure 1 shows select snapshots of the EKF estimate after increasing numbers of measurement updates. As seen in
Fig. 1(d), the EKF is able to replicate the reference dynamics given a sufficient number of measurement update steps.
Figure 1(b) shows how the measurements at 𝑥 = 5 and 𝑥 = 20 not only update those specific cell values, but also the
nearby cells across the domain. Figure 1(c) shows the continued improvement of the solution as the reference signal
advects before full agreement is reached in Fig. 1(d). The pink uncertainty bounds, calculated from the covariance
matrix, 𝑃, are shown to diminish as the filter operates due to the incoming measurement data. The increase in uncertainty
to the right of the measurement points is a direct consequence of the first-order upwind propagation scheme of the
model as the information flows left to right. Note that changing the values of 𝑄 and 𝑅 will change the size and shape of
the uncertainty bounds. These initial results demonstrate the capability of the EKF to track spatial trends from few
measurement signals, indicating that the EKF will be capable of following particle drift in a plasma simulation.

w
w

x x

Initial Condition

Fig. 1 An example of the EKF updating a linear advection solution (a) at time step 𝑡 = 0, (b) after the first
measurement update, (c) after 20 measurement updates, and (d) after 55 measurement updates when the system
matches the reference solution. The estimates (red solid line) are shown with their 3𝜎 uncertainty bounds (pink
shade) and the reference solution (black dashed line).

V. Thermal Conduction
To study the capabilities of the EKF with diffusion processes, a simple thermal conduction testcase is created.

This case requires the EKF to track spatial variation in two directions with limited measurement data. By choosing
to estimate the thermal conductivity parameter, 𝜅, this study emulates estimating an electron mobility parameter that
affects the motion of electrons in a plasma. Studies have been performed using the EKF to estimate thermal conductivity
parameters in other literature [15], but this study will not replicate that work.

A. Numerical Setup
The general thermal conduction equation can be written as 𝑢𝑡 = 𝜅𝑢𝑥𝑥 where the subscripts 𝑡 and 𝑥 indicate partial

derivatives with respect to time and space, respectively. The double 𝑥𝑥 subscript indicates a second derivative. The
initial condition over 100 cells in a domain of 0 to 1 is set as a discontinuous pulse in the center of the domain, such that
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𝑖 𝑓 (𝑥 < 0.4 or 𝑥 > 0.6) → 𝑢 = 0,
𝑖 𝑓 (0.39 < 𝑥 < 0.61) → 𝑢 = 1.

(4)

For this work, the system is propagated as first order forward in time and second order in space using a central-
differencing scheme as shown below

𝑢𝑛
𝑘+1 − 𝑢

𝑛
𝑘

Δ𝑡
= 𝜅

𝑢𝑛+1
𝑘

− 2𝑢𝑛
𝑘
+ 𝑢𝑛−1

𝑘

Δ𝑥2
, (5)

with a thermal conductivity coefficient of 0.7.
The initial condition given to the EKF is a zero-value domain with some assumption for the value of the thermal

conductivity coefficient. The state vector consists of the solution at every cell as well as the conductivity coefficient,
such that 𝒙 = [𝒖 𝜅]𝑇 where 𝒖 represents the vector of every cell value in the domain. This setup leads to a diagonal
Jacobian matrix consisting of the partial derivatives of the propagation equation with respect to the cell of interest,
the cell to the right and left of the current cell, and the thermal conductivity coefficient. The covariance matrix is
constructed the same way as for the linear advection test case using a set 𝑟𝑒 folding scale to initialize the matrix. The
propagation is ensured to meet the Von Neumann stability condition as 𝜅Δ𝑡/Δ𝑥2 ≤ 1/2 to prevent numerical instabilities.
The EKF uses a time step of Δ𝑡 = 2.5 × 10−5 with a measurement signal of Δ𝑡𝑚 = 2.5 × 10−4 . The process noise
covariance is set equal to 1 for every unknown, and the measurement noise covariance is set to 0.01.

B. Estimating One Thermal Conductivity Condition
Part of this work is intended to understand whether the EKF is affected by the presence of time-dependent oscillations

during the simulation. This is induced by adding a source term to the original conduction equation such that

𝑢𝑡 = 𝜅𝑢𝑥𝑥 +𝑄𝑠 , (6)

where 𝑄𝑠 is a source term of any functional form or value. For this study, the source term takes the form of a repeating
pulse mode to create a steady oscillation, which is motivated by the pulsed ICPs[9]. To enable a truly repeatable pulse,
Dirichlet boundary conditions are used for this particular test case. Measurement signals are supplied for 𝑥 = 0.45, 0.55
as it was discovered in previous studies that two measurement signals improved the overall accuracy of the estimate.
Figure 2(a) shows the value of the central cell in the domain to demonstrate effect of the source term, in red,

compared to the sourceless diffusion case shown, in black. Note that the pulsed solution is perfectly repeated in each
oscillation, but is only shown with one tenth of the original data in this figure, leading to an incomplete figure. Figure
2(b) compares the estimate of a single thermal conductivity coefficient, applied across the entire domain, for both the
constant diffusion and the pulsed source term cases. The pulsed solution is seen to overestimate the reference thermal
conductivity value of 0.7 as time continues, while the sourceless estimate has reached a near steady-state condition
notably closer to the reference solution. These results are the first indication that time-dependent oscillations that affect
spatial distributions may be of concern in future applications of the extended Kalman filter. As the system has no
knowledge of the pulse prior to the arrival of measurement data, the EKF attempts to account for the oscillations by
altering the thermal conductivity coefficient. This incorrect assignment of causation requires further study to determine
whether certain limitations could be put on the EKF to improve the estimate.

C. Estimating Two Thermal Conductivity Coefficients
Using the sourceless testcase and increasing the complexity of the unknown physics of the problem, here we aim to

demonstrate the capability of the EKF to simultaneously estimate two thermal conductivity coefficients. Studies quickly
showed that at least one measurement signal was required in each different section of the domain for observability
conditions to be met. Thus, two measurement signals are used to estimate the two thermal conductivity coefficients. The
domain is split equally in half with 𝑥 ∈ [0, 0.5] using 𝜅1 = 0.7 and 𝑥 ∈ [0.5, 1] using 𝜅2 = 0.07. The initial estimates
are set near the reference solutions and the process and measurement noise covariances are kept the same as the previous
test case.
The location of the measurement signals are shown to have an effect on the quality of the estimation, as shown in

Fig. 3. Here, both the domain estimates and 𝜅 estimates are shown. Representative cases of good and poor estimates
are presented to demonstrate how widely the results can vary. The most significant cause of the poor estimation for
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Fig. 2 An example of the pulsed source (pulsed 𝑄𝑠) versus sourceless (𝑄𝑠 = 0) diffusion tests where 𝑄𝑠 is the
source term. (a) The value at the center of the domain, 𝑢50, over the course of the simulation for the sourceless
diffusion (black) and the pulsed diffusion (red). (b) The estimated thermal conductivity coefficient for the
sourceless and pulsed diffusion cases.

the 𝑥 = 0.3, 0.7 measurement location case, as shown using the red solid like in Fig. 3, is due to the incorrect initial
condition for the domain. If the same test is run with a correct initial pulse rather than a zero condition, the resulting
estimate is significantly closer to the reference solution. The requirement for the EKF to recognize the discontinuous
initial pulse of the domain proves challenging when the measurement signals lie outside of the initial pulse width due
to the time taken for the system to diffuse. The solution with both measurement conditions inside of the initial pulse,
𝑥 = 0.4, 0.6, shown with the blue dashed line in Fig. 3, yields a significant improvement in the estimation of the overall
domain, with only the boundary values beginning to diverge from the reference solution. Though the larger 𝜅1 value on
the left hand side of the domain is overestimated, likely due to the lag in the ability of the EKF to catch the reference
dynamics combined with the noise covariances, the smaller 𝜅2 is estimated almost perfectly.

(a) Diffusion Estimate (b)  𝜅 Estimate

0.3, 0.7
0.4, 0.6

Reference

Fig. 3 The estimation results for (a) the diffusing solution and (b) the 𝜅 estimates for two unknowns and two
measurement signals. The 𝜅 = 0.7 value reference solution corresponds to the left hand side of the domain, while
the 𝜅 = 0.07 value is used for the right hand side of the diffusion solution. Note that both plots use the same
legend.
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VI. Initial Studies using a Fluid Hall Effect Thruster Model
Having applied the EKF to a drift and diffusion representative test case, the EKF is applied to a Hall effect thruster

based on a one-dimensional quasineutral drift-diffusion (QDD) fluid model [16]. This model uses a quasineutral
assumption for the plasma, a drift-diffusion approximation for the electrons, and accounts only for singly charged ions.

A. Fluid Hall Effect Thruster Model Setup
The conservation equations for mass, momentum, and energy can initially be written as

𝜕𝑛

𝜕𝑡
+ ∇ · (𝑛𝒖) = 𝑆, (7a)

𝜕

𝜕𝑡
(𝑚𝑛𝒖) + ∇(𝑚𝑛𝒖.𝒖 + 𝑝) = 𝑞(𝑬 + 𝒖 × 𝑩) + ∇𝜏 + 𝑹, (7b)

𝜕

𝜕𝑡
(𝑛𝜖) + ∇ · (𝑛𝒖𝜖 + 𝑝𝒖) = ∇ · 𝑸 + 𝑞𝑛𝒖 · 𝑬 + 𝑆𝑒𝑙𝑎𝑠 − 𝑆𝑖𝑛𝑒𝑙𝑎𝑠 +Φ, (7c)

where 𝑛 is the number density, 𝒖 is the bulk velocity, 𝜂 is the mean energy, 𝑆 is the source for particle density, 𝑝 is the
pressure tensor, 𝑹 is the momentum transfer due to collisions, 𝑞 is the heat flux vector, and 𝑆𝑒𝑙𝑎𝑠, 𝑆𝑖𝑛𝑒𝑙𝑎𝑠, and Φ are
energy exchange due to various types of collisions. For the ion continuity equation, the source term can be written as
𝑆𝑖𝑜𝑛 = 𝑛𝑒𝜈𝑖𝑜𝑛 to directly account for the effects of ionization based on a specific rate coefficient obtained from tabulated
data generated by BOLSIG+ in the model [17].
The drift-diffusion approximation, assuming one axial direction, can be simplified by also assuming that the transient

and inertial terms are neglected since the model assumes electrons are at steady-state within the ion characteristic time
and move at low Mach numbers. This leads to a pair of equations to capture the electron transport as

Γ𝑒,𝑥 = 𝑛𝑒𝑢𝑒,𝑥 = −𝜇𝑒,⊥
(
𝑛𝑒𝐸⊥ + 1

𝑒

𝜕𝑝𝑒

𝜕𝑥⊥

)
, (8a)

Γ𝑒,𝑦 = 𝑛𝑒𝑢𝑒,𝑦 = 𝑛𝑒𝑢𝑒,𝑥Ω, (8b)

where the cross-field electron mobility is considered to be 𝜇𝑒,⊥ = 𝜇⊥,𝑐𝑙𝑎𝑠 + 𝜇⊥,𝑎𝑛𝑜, the classical contribution to mobility
is 𝜇⊥,𝑐𝑙𝑎𝑠 = 𝑒/𝑚𝑒𝜈𝑚 (1 +Ω2)−1, the anomalous contribution to mobility is 𝜇⊥,𝑎𝑛𝑜 = 𝛼/𝐵, the Hall parameter is defined
as Ω = 𝜔𝐵/𝜈𝑚,𝑒 based on the electron gyrofrequency 𝜔𝐵 = 𝑞𝐵/𝑚𝑒, the momentum transfer collision frequency is 𝜈𝑚,
𝛼 is an empirical coefficient for the anomalous electron transport, 𝑛𝑒 is the number density of electrons, and 𝑝𝑒 is the
electron pressure which can be solved using the ideal gas law with an isotropic assumption.
The quasineutral assumption results in the use of a charge conservation equation to solve the electrostatic electric

field. This equation can be written by taking the difference between the ion and electron conservation equations and
assuming only electron-impact ionization from the ground state neutral atom to singly charged ions. Coupling this with
the quasineutral assumption via the electron flux, allows the potential to be solved as

𝜕Γ𝑒,𝑥

𝜕𝑥
=
𝜕

𝜕𝑥

(
𝜇𝑒,⊥𝑛𝑒

𝜕𝜙

𝜕𝑥
−
𝜇𝑒,⊥
𝑒

𝜕𝑝𝑒

𝜕𝑥

)
=
𝜕Γ𝑖,𝑥

𝜕𝑥
, (9)

which is a second-order partial differential equation for the electrostatic potential, 𝜙, written in the cross-field direction.
Note that the electric field is 𝑬 = −∇𝜙. This equation can be solved using a tridiagonal matrix solver with Dirichlet and
Neumann boundary conditions.
A further consequence of the quasineutral assumption is that the anode sheath is unable to be resolved. This study

uses an ion-attracting, electron-repelling sheath that assumes a half-Maxwellian distribution of electrons. The sheath
potential at the anode can be calculated by

− Γ𝑖,𝑎 +
1
4
𝑛𝑒,𝑎

√︄
8𝑘𝐵𝑇𝑒,𝑎
𝜋𝑚𝑒

exp
(
− 𝑒𝑉𝑎

𝑘𝐵𝑇𝑒,𝑎

)
=
𝑗𝑑

𝑒
, (10)

where 𝑗𝑑 is the net current density and 𝑉𝑎 is the anode sheath potential used as a boundary condition of Eq. (9). The
second boundary condition assumes 𝜙 = 0 at the quasineutral electron-injection plane at the cathode. The model
interface quantities at the anode are denoted with a subscript 𝑎 and are solved by extrapolating the values from the cell
centers.
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The elastic energy loss is negligible in HET discharge plasmas as the electron temperature is typically larger than 5
eV where inelastic collisions become dominant electron energy loss mechanisms. Thus, an alternative to Eq. (7c) for
calculating the electron energy is to solve the internal energy equation by subtracting the energy equation obtained
from the conservation of momentum from the total energy equation, Eq. (7c). The resulting equation is solved using a
second-order implicit Crank-Nicolson scheme to integrate the left hand side in time while the right hand side is solved
explicitly using a tridiagonal solver.
The ion pressure can be solved with the ion density and momentum in a coupled fashion to reduce numerical

oscillations. The electric field can be shown to be dependent on the ion density, leading to a nonlinear coupling between
the electron pressure contribution with the inviscid flux in the ion momentum equation. For this coupling, the ion
momentum equation is written for non-magnetized, collisionless ions as

𝜕 (𝑛𝑖𝒖𝑖)
𝜕𝑡

+ ∇
(
𝑛𝑖𝒖𝑖𝒖𝑖 +

𝑝𝑖

𝑚𝑖

)
=
𝑒

𝑚𝑖

𝑛𝑖𝑬 .

This ion momentum equation is written by substituting the functional form of 𝐸 to obtain

𝜕 (𝑛𝑖𝑢𝑖)
𝜕𝑡

+ ∇
(
𝑛𝑖𝑢𝑖𝑢𝑖 +

𝑝𝑖 + 𝑝𝑒
𝑚𝑖

)
= − 𝑒𝑛𝑖𝑢𝑒

𝑚𝑖𝜇⊥
, (11)

a modified ion momentum equation for the electron-pressure coupled method. Note that the right hand side is a function
of 𝒖𝑒 but recovers the electric field in the region where the effect of diffusion flux is negligible. A Steger-Warming flux
vector splitting scheme is used to evaluate the left hand side of the ion conservation equations based on the inviscid
Euler formulation. Further detail of the method can be found in Ref. 16.

B. Estimating the Electron Mobility Parameter
Initial efforts to incorporate the extended Kalman filter with QDD lead to simulations that continually failed. The

original setup of the state vector and propagation scheme proved riddled with numerical artifacts as well as complex
physical relations leading to unstable solutions. While this work is being reconsidered, the presented work demonstrates
a simpler approach. A one-equation update of the electron mobility is used to study the sensitivity of the system to
changes in the electron mobility, as a less-intrusive imitation of the effect of the EKF. By providing the QDD model
with a measurement discharge current value, an equation for the discharge current,

𝐼𝑑 = 𝑒(𝑛𝑖𝑢𝑖 − 𝑛𝑒𝑢𝑒), (12)

can be re-written to solve for the electron mobility parameter, 𝜇⊥, by substituting the electron velocity with

𝑢𝑒 = −𝜇⊥
(
𝐸 + 1

𝑒𝑛𝑒

𝜕𝑝𝑒

𝜕𝑥

)
.

This equation can be solved for every cell-interface value of the mobility when the measurement signal arrives every
0.5 𝜇s. The electron mobility is solved on the cell-interfaces using Eq. (12) and a simple averaging scheme is used to
alternate between cell-interface and cell-center values.
Numerical artifacts are seen to arise from the simple averaging scheme used in the model to transition between

cell-center and cell-interface values. When supplying a constant measurement signal, the discharge current is shown to
oscillate around the desired solution due to the resulting non-constant mobility in time, as demonstrated in Fig. 4(a).
The updated values do not match the steady-state mobility to double precision, leading to instabilities in the state of the
plasma that create oscillations in the discharge current. Furthermore, updating the mobility across the entire domain can
lead to discontinuities that negatively affect the state of the plasma. The near-anode region is highly sensitive to the
update equation, quickly breaking down into large oscillations, as demonstrated in Fig. 4(b). These oscillations were
traced back to the electric field, pointing towards the construction of the anode sheath potential as a likely source of
uncertainty.
Using this knowledge, specific regions of the domain were allowed to update while others were held constant. This

was either performed in accordance with the three-region model proposed by Ref. 4, by selecting only ten cells, or
selecting only five cells to be updated. The exit and plume regions are able to be updated, but any of the domain
within the channel quickly grows to impossibly large values, causing the simulation to fail as demonstrated in Fig. 4(b).
Regardless of the region, the updated mobility is seen to diffuse over time until it reaching some steady value based
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Fig. 4 Example of how imperfections in the steady-state mobility solution leads to (a) oscillations in the discharge
current and (b) the electron mobility near the anode.

on how much of the domain is allowed to update. A selection of these results are shown in Fig. 5. Figure 5(a) shows
the original steady-state solution as compared to Figure 5(b) where the channel exit and plume (e.g., 𝑥 > 0.2 m) were
allowed to update and Figure 5(c) where the entire domain was allowed to update. The steady state reached by the
mobility value in the case of the plume update still yields an oscillatory discharge current solution that does not match
the original steady-state solution. For the case of the entire domain updating, the declining mobility parameter reduces
all plasma in the domain and causes an immediate, and over-exaggerated, need to increase the mobility, as shown in
Fig. 5(c). Such a discontinuous jump in value across the domain quickly leads to simulation failure.
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Fig. 5 A selection of electron mobility solutions using the one-equation update. (a) The original, steady-state
solution of the electron mobility. (b) The electron mobility if the channel exit and plume cell values are updated,
𝑥 ≥ 0.02𝑚. (c) The electron mobility if all cell values are updated.

These results indicate that further consideration must be taken into the setup of this problem. The idea to use
an update in the mobility parameter may be insufficient to dictate the state of the system overall, as cited by some
observability concerns related to extended Kalman filters [12]. A more stringent averaging technique may be required to
reduce numerical artifacts in the model as values are transitioned from cell-center to cell-interface. Specific, physical
limitations may be required in the near-anode region to mitigate the oscillations that arise based on considerations such
as the anode sheath potential [18]. Isolating the mobility further into its anomalous and classical components may also
alleviate some of the numerical discrepancies caused by updating the entire mobility value.

VII. Conclusion
An extended Kalman filter (EKF) is applied to two different one-dimensional models to demonstrate its capabilities

for future use with Hall effect thruster models. The EKF is shown to reconstruct the initial domain of a sinusoidal linear
advection scheme as well as estimate thermal diffusion coefficients in a thermal diffusion testcase. Both of these tests
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are imperative to study before applying the EKF to a Hall effect thruster to ensure that the EKF can reasonably estimate
quantities such as the electron mobility. Current work is focused on constructing and verifying a one-dimensional Hall
effect thruster model based on a quasi-neutral drift-diffusion approximation such that the EKF can be applied. The
challenges of this application result from a lack of understanding of best practices for particular limitations on the EKF
as applied to as complex of a model as Hall effect thruster physics. Initial tests using a direct-update method have
shown the challenges faced with using an extended Kalman filter in a significantly more complex physics-based model.
Future work is required to identify physical constraints to improve estimation results or to study alternative estimation
techniques.
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